
1

Automated Defense
from Rootkit Attacks

Arati Baliga and Liviu Iftode
Computer Science Department

Rutgers University
110 Frelinghuysen Road, Piscataway, NJ

Xiaoxin (Mike) Chen
VMware Inc.

3145 Porter Drive
Palo Alto, CA

2

About Us
Laboratory of Distributed Computing (DISCO Lab)

Headed by Prof. Liviu Iftode
10 graduate students
http://discolab.rutgers.edu

Projects
Remote Healing Using Backdoors

Remote repair/recovery of operating system and application state.

Defensive Architectures
Automated defense against attacks and intrusions

3

Outline
Motivation
Background
Our Approach
Prototype
Work in Progress
Future Work
Related Work
Conclusion

4

Motivation
With the increasing attack trends, human response
to intrusions is too slow or not possible

Software and OS vulnerabilities
Fast spreading worms (SQL Slammer)

We need systems that can detect intrusions
automatically as early as possible and recover

5

Outline
Motivation
Background
Our Approach
Prototype
Work in Progress
Future Work
Related Work
Conclusion

6

Viruses and Worms
Viruses replicate by modifying a normal program/file
with a copy of itself.

Execution in the host program/file results in the execution
of the virus
Usually needs human action to execute infected progam

Worms are stand-alone programs that spread through
the network by exploiting vulnerabilities in services.

7

Rootkits
Collection of tools used by the attacker to hold
root privileges on the compromised system.
Rootkit hiding mechanism:

User-level rootkits
Replace system binaries like ps and netstat

Shared library rootkits
Replace shared libraries

Kernel-level rootkits
Replace entries in system call table
Replace entries in interrupt descriptor table
Replace kernel/module text.

Compromise system integrity

8

Stealth Malware
Increasing number of virus/worm writers use rootkits
to evade detection from anti-virus software.

Stealth AOL worm

In this talk, we refer to this group of malware that
hide using rootkit techniques as “stealth malware”.

9

Intrusion Timeline

Damage done to the system from t1-t3 needs to be discovered
and undone – this takes time!
Ideally intrusion should be detected at t1(Prevention)

Easier for known attacks
Hard for new/unknown attacks

Intrusion Detection Systems
Move t3 closer to t2
Recover (undo damage)
Can t3 be moved between t1 and t2?

Happens at time t1 Manifests at time t2 Detected at time t3

Damage done to the system

10

Intrusion Detection Systems (IDS)
Detection methods

Signature based detection
Misuse detection
Anomaly detection

Detection Location
Host Based IDS
Network Based IDS

11

IDS Implementation
Stand-alone systems: Copilot[Arbaugh et al],
Backdoors[Bohra et al]

Independent secure device
Polling based approaches
Does not consume CPU cycles

Virtualized Environment [VMI, Mendel et al]
Can intercept events in the virtual machine
Can interpose/change virtual machine state to perform
preventive/healing actions

12

Ideal IDS Properties
Prevent system from being compromised
Detect intrusion asap if prevention is not possible.
Once intrusion is detected, recover the system to
restore faith in the system.

Transparently
Reveal to the user the damage that has occurred.

Generate an attack profile

13

Outline
Motivation
Background
Our Approach
Prototype
Work in Progress
Future Work
Related Work
Conclusion

14

Our Approach
Detect malicious process when it performs illegal
access to protected zones.

Track dependencies between files and processes
to undo damage automatically

Undo damage

15

Protected Zones

Fig. 1. Figure shows the protected parts of the memory and filesystem that are shaded
in pink. This represents the core of the system, which is always protected. The
unshaded portions consist of all other files and running programs, which can be
compromised at any time.

16

Protected Zones (cont’d)
Core System Files

Normally do not change during the lifetime of the system
Examples: ps, ls, netstat, etc.

Service Files
Can be added by administrator depending on which service
needs to be protected.
Example: apache binary

17

Our Approach
Detect malicious process when it performs illegal
access to protected zones.

Track dependencies between files and processes
to undo damage automatically

Undo damage

18

Track Dependencies
Infer dependencies

Dependencies between files and processes.
Parent-child relationships between processes.

Store dependencies
Create a tree of dependencies (Dependency tree)
Dependency tree is stored in a database.
Dependency tree size has to be small enough to provide
fast undo.

19

Infer Dependencies
Get system call data (number, arguments)

Page directory base identifies process uniquely
cr3 register on the x86 platform

File identified by full pathname

20

Infer Dependencies (cont’d)
On fork

Child has same <esp,eip> but different cr3
When processes executed from the same program, fork at a
given point, all children have same <esp,eip>
Ambiguities are resolved using physical page number of
stack page
Relies on Linux fork copy-on-write semantics

Apply dependency rules

21

Dependency Tree

P3

P2

P1

P4

F1

c

P1 creates P2

P2 exits
P2 P1 creates P3

P1 creates P4

P3 creates F1

P4 creates F2F2

c

F1 is deleted

P4 exits

P1 exits

22

Dependency Storage
Size of the dependency tree created is proportional to
the number of new files and processes created on the
file system.

Storage requirements are modest
Dependency rules prune entries that are no longer required

The dependency tree lives until system is rebooted

23

Our Approach
Detect malicious process when it performs illegal
access to protected zones.

Track dependencies between files and processes
to undo damage automatically

Undo damage
Identify and kill malicious processes using the
dependency tree
Files not deleted

24

Containment Steps
Assumes a process resident set that always exists in
the system.
Refer to dependency tree and locate malicious subtree
Kill all possible malicious processes
Prevents ill-effects

Installation/Existence of backdoors.
Keyloggers

25

Containment Algorithm

P3

P1

P4

F1

c

P2

F2

c

P0
P0 in the resident set

Malicious subtree

Malicious write

26

Outline
Motivation
Background
Our Approach
Prototype
Work in Progress
Future Work
Related Work
Conclusion

27

Paladin Prototype

28

System Calls

mmap, sockets, named pipes will be added later

29

Implementation Details
Guest OS must be non-pageable
Paladin driver

Has knowledge of Guest OS kernel
Performs symbol lookup of kernel text and jump tables
Also responsible for carrying out undo actions

30

Performance Evaluation

56 mins and 7 secs

8 mins 30 secs

System calls
(slow path)
With Paladin

31 mins and 54 secs53 mins and 3 secsCompile
Kernel

3 mins and 46 secs7 mins and 29 secsKernel
Copy

Optimized VMM
(Fast path syscalls)

System calls
(slow path)
Without Paladin

• VMware workstation software
• Database: MySQL
• Guest OS and Host OS: Linux 2.4 kernel.

31

System Calls Tracked

Total system calls v/s system calls processed by Paladin

Performance of individual system calls

32

Test Cases
User level rootkit

Ambient Rootkit (ARK)

Kernel level rootkit
SuckIt

Linux Worm
Lion

33

User-Level Rootkit: Ambient (ARK)

The security framework prevents corruption of all the system tools

Point of detection

/bin/login

34

Kernel-Level Rootkit: SuckIt
Modifies instructions in sys_call to redirect to it’s
own system call table.
Does not touch original system call table
Works even when kernel module support is disabled
Provides covert backdoor that is activated on
receiving a special packet.
The security framework prevents corruption of kernel
text and installation of the backdoor.

35

Worm: Lion

/bin/ps

c

Detection point

/bin/mv

c

36

Limitations
Current implementation does not prevent

Corruption of resident processes
Overwriting disk blocks.

Rootkit attacks that corrupt data without changing
any kernel code or tables are not detected

Ex: FU rootkit (Next generation rootkits ?)

37

Outline
Motivation
Background
Our Approach
Prototype
Work in Progress
Future Work
Related Work
Conclusion

38

Work in Progress: Fingerprinting
Early attack identification through fingerprint
matching

Find them before they hide

Automated identification of attacker’s files

39

Fingerprinting Steps
Dynamic cloning

Spawn a clone upon attack detection

Sandboxing
Reconfigure network properties

Fine-grained monitoring
Watch the processes in the malicious subtree
Finer control possible.

40

Example: ARK Fingerprint
Files created
/dev/capi20.20
/sbin/syslogd
/usr/lib/.ark?
/bin/login
/usr/sbin/sshd
/bin/ls
/usr/bin/du
/bin/ps
/usr/bin/pstree
/usr/bin/killall
/usr/bin/top
/bin/netstat
/var/run/syslogd.pid
/var/spool/clientmqueue/dfj99KxukX001449
/var/spool/clientmqueue/tfj99KxukX001449
/var/spool/clientmqueue/dfj99L0HiX001457
/var/spool/clientmqueue/tfj99L0HiX001457
/var/spool/clientmqueue/dfj99L0cv1001466
/var/spool/clientmqueue/tfj99L0cv1001466
/var/spool/clientmqueue/dfj99L0w2M001475
/var/spool/clientmqueue/tfj99L0w2M001475

Processes:
/tmp/ark1.01/ark
/bin/rm
/sbin/syslogd
/bin/cp
/usr/sbin/sshd
/bin/chmod
/bin/cat
/bin/hostname
/sbin/ifconfig
/bin/grep
/bin/awk
/bin/sed
/sbin/modprobe
/usr/lib/sendmail
/usr/lib/libhesiod.so.0

41

Future Work
Intrusion detection through system call anomalies

Generate behavioural profiles using statistical/learning
techniques

Intrusion detection through network packet
monitoring

Collaborative detection across VMs
Sharing attack fingerprints
Cross node detection

42

Outline
Motivation
Background
Our Approach
Prototype
Future Work
Related Work
Conclusion

43

Related Work
Model for Intrusion Detection

VMI

Automated Detection
Copilot, Strider Ghostbuster, Tripwire

Automated Post-Intrusion Analysis and Repair
Repairable File Service
Backtracker

Automated Online Defense
Introvert, Vigilante

44

Model for Intrusion Detection
VMI

Virtual Machine based Introspection (VMI) for Intrusion
Detection [NDSS ‘03]

45

Detection
Tools available for rootkit detection

Kstat, Chkrootkit, St. Michael, Samhain, F-Secure
BlackLight, RootkitRevealer, Tripwire, AIDE

Copilot
Automated detection from an independent PCI device
[Security ‘03]

Strider Ghostbuster
A cross-view diff-based approach. [DSN ‘05]

46

Post-Intrusion Analysis and Repair
Aid to the administrator

Fix the filesystem and keep good changes
Find how the intrusion happened

RFS, Taser
Design, Implementation and Evaluation of Repairable File
Service [DSN ‘03]
The Taser Intrusion Recovery System [SOSP ‘05]

BackTracker
Backtracking Intrusions [SOSP ‘03]

47

Online Defense
Provides online defense against intrusions

Introvert
Detecting Past and Present Intrusions Through
Vulnerability-Specific Predicates [SOSP ‘05]

Vigilante
Vigilante: End-to End Containment of Internet Worms
[SOSP ’05]

48

Conclusion
The steadily increasing rate of attacks and intrusions
requires a robust automated solution
We have designed an approach that protects the
system from rootkit attacks and contains the effects of
stealth malware that use rootkits to hide.
We developed a prototype that demonstarted our
approach that could sucessfully counter a user-level
rootkit, a kernel-level rootkit and a worm that used
rootkit techniques to hide

49

Thank You !

http://discolab.rutgers.edu

This work is supported by NSF CCR #0133366

