

Building Slack Bots

Create powerful, useful, fast, and fun chat bots that
make Slack better

Paul Asjes

BIRMINGHAM - MUMBAI

Building Slack Bots

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1170616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-080-6

www.packtpub.com

www.packtpub.com

Credits

Author
Paul Asjes

Reviewer
Nicolas Grenié

Commissioning Editor
David Barnes

Acquisition Editor
Usha Iyer

Content Development Editor
Mehvash Fatima

Technical Editor
Siddhi Rane

Copy Editor
Roshni Banerjee

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Paul Asjes started programming on his TI-83 calculator in high school and has
been hooked ever since.

Specializing in JavaScript, he is always interested in staying up to date with the
latest developments in the field. Currently, he is building universal full-stack apps
with technologies such as React, Webpack, and Node when he's not spending far too
much time on Slack.

Since his IRC days, he has been interested in chat bots and how they can be used. He
has written several Slack bots to date, ranging from bots that facilitate playing games
to bots that retrieve important business metrics.

I would like to thank my wife, Caitlin, for being my biggest fan,
proofreader, and muse during the writing of this book.

About the Reviewer

Nicolas Grenié is a hacker-in-residence at 3scale, living between Barcelona and
San Francisco.

Nicolas built his first website in 2000 using Microsoft Word and since then has not
stopped learning about programming.

This API freak likes to try new languages and APIs all the time. He has built many
integrations for Slack and Amazon Echo. He runs a good number of meetups in
Barcelona about APIs, Meteor, and entrepreneurship.

When he isn't working, you have a good chance of finding him hacking side projects
or enjoying a good craft beer. And, of course, as he is French, frogs and snails are
part of his daily diet!

I want to thank Steven Willmott, the CEO of 3scale, and the entire
3scale team for giving me the inspiration and time to hack interesting
projects and technology.

I also want to thank my parents and family for the positive learning
environment they've built, letting me explore my passion and
curiosity for technology.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Slack	 1

Introduction to Slack	 1
Slack as a platform	 2
The end goal	 4
Summary	 4

Chapter 2: Your First Bot	 5
Preparing your environment	 6

Installing Node.js	 6
Installing the development tools using NPM	 7
Creating a new project	 8
Creating a Slack API token	 14
Connecting a bot	 16
Joining a channel	 17
Sending a message to a channel	 18
The slack object	 18
Getting all the channels	 19
Getting all members in a channel	 21
Sending a message to a channel	 23

Basic responses	 25
The authenticated event	 25
Using the message event	 25
Avoiding spam	 27

Sending a direct message	 30
Restricting access	 31

Adding and removing admins	 33
Debugging a bot	 33
Summary	 37

Table of Contents

[ii]

Chapter 3: Adding Complexity	 39
Responding to keywords	 39

Using classes	 39
Reactive bots	 43

Bot commands	 46
Sanitizing inputs	 49

External API integration	 52
Error handling	 61

Summary	 62
Chapter 4: Using Data	 63

Introduction to Redis	 63
Installing Redis	 64

Mac OS X	 65
Windows	 65
Unix	 65

Connecting to Redis	 66
Saving and retrieving data	 68

Connecting bots	 69
Dynamic storage	 70
Hashes, lists, and sets	 72

Hashes	 73
Lists	 75
Sets	 75
Sorted sets	 76

Best practices	 77
Simple to-do example	 82
Summary	 88

Chapter 5: Understanding and Responding to Natural Language	 89
A brief introduction to natural language	 89
Fundamentals of NLP	 91
Tokenizers	 92
Stemmers	 94
String distance	 97
Inflection	 99
Displaying data in a natural way	 100
When to use NLP?	 103
Mentions	 105
Classifiers	 108
Using trained classifiers	 109
Natural language generation	 115

Table of Contents

[iii]

When should we use natural language generation?	 116
The uncanny valley	 116
Summary	 118

Chapter 6: Webhooks and Slash Commands	 119
Webhooks	 120

Incoming webhooks	 120
Outgoing webhooks	 125

Slash commands	 129
In-channel and ephemeral responses	 138
Using webhooks and slash commands	 142
Summary	 143

Chapter 7: Publishing Your App	 145
The Slack app directory	 145
Registering your app and obtaining tokens	 147
Understanding the OAuth process	 149
Scopes	 156
Submitting your app to the app directory	 158
Monetizing your bot	 159

Summary	 160
Further reading	 161

Index	 163

[v]

Preface
Chat bots have become big talking points in the world of business and software
development. On the forefront of team communications is Slack, a platform for
talking to colleagues and friends about absolutely anything. The engineers at Slack
saw the potential and have designed a system that allows anyone to build their own
Slack bots for productivity, ease of use, or just plain entertainment.

This book will teach you how to use a myriad of tools to build the very best bots for
the Slack platform. Whether you are a programming beginner or a seasoned veteran,
by the end of this book, you will be able to create high-quality bots whose only limit
is the your imagination. You might also pick up a few tricks along the way.

What this book covers
Chapter 1, Getting Started with Slack, shows you what is Slack and why we should care
about Slack bots.

Chapter 2, Your First Bot, takes you through building your first bot and explains
how it works.

Chapter 3, Adding Complexity, helps us expand our first bot with new and
useful functionalities.

Chapter 4, Using Data, teaches you how to use persistent data with your Slack bots.

Chapter 5, Understanding and Responding to Natural Language, teaches you about
natural language processing and how to develop a bot that can comprehend and
respond in natural language.

Chapter 6, Webhooks and Slash Commands, takes us through the uses of webhooks and
Slash commands in a Slack setting.

Chapter 7, Publishing Your App, teaches you how to publish your app or bot so that it
can be used by others outside your company.

Preface

[vi]

What you need for this book
You should have an intermediate understanding of JavaScript and programming
concepts in general. For this book, we will be using Node.js version 5.0.0. This
means that the JavaScript code samples contained within will use ECMAScript 2015
(ES2015, more commonly known as ES6) features, which have been enabled in Node
v5.0.0. For a full list of ES6 features enabled in Node.js version 5 and up, visit the
Node.js website (https://nodejs.org/en/docs/es6/).

This book, its techniques, and the code samples within are OS-agnostic, although for
debugging purposes, either the Google Chrome or Opera browser is required.

Who this book is for
This is a book for software developers who want to build Slack bots for their own
company's use or for customers.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Save the file and then run the code via iron-node in your terminal."

A block of code is set as follows:

 if (user && user.is_bot) {
 return;
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 if (user && user.is_bot) {
 return;
 }

Any command-line input or output is written as follows:

npm install -g iron-node

https://nodejs.org/en/docs/es6/

Preface

[vii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Either
click on the Step over button in the top-right corner, symbolized by an arrow
curving around a dot, or hit F10 to step over to the next line."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Building-Slack-Bots. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[ix]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with Slack
This book will enable a beginner to create their own Slack bot either for amusement
or professional purposes.

The ultimate goal of this book is for you to think of Slack as a development platform
with great potential, rather than simply a chat client. As Slack continues its meteoric
rise in popularity in the developer community, the possibilities and opportunities
contained in Slack apps will prove to be a valuable tool in any developer's toolbox.

In this chapter, we introduce you to Slack and its possibilities. We will cover:

•	 An introduction to Slack
•	 Slack as a platform
•	 The end goal

Introduction to Slack
Launched in August 2013, Slack started as an internal communication tool utilized
by small teams but has been rapidly morphing into a versatile communications
platform used by many parties, including the open source community and
large businesses.

Slack is a real-time messaging application that specializes in team communication.
In a crowded space of productivity applications, Slack sets itself apart by providing
extensive integrations with popular third-party apps and provides users with the
platform to build their own integrations.

Getting Started with Slack

[2]

As of the beginning of 2016, Slack is used by approximately 2 million users daily,
and spread across 60,000 teams that send 800 million messages per month (http://
expandedramblings.com/index.php/slack-statistics/). Some of the more
well known companies who use Slack include Airbnb, LinkedIn, and The New York
Times. This service has become so popular, largely thanks to its impressive uptime
rate of over 99.9 percent. What sets Slack apart from competition such as HipChat
or Skype for Business is the determination of the company to open its platform for
third-party developers in the form of an application program interface (API). To
spur the growth of their service as a platform, in December 2015 Slack pledged to
invest $80 million into software projects that use its technology (http://fortune.
com/2015/12/15/slack-app-investment-fund/). Added to the more than $320
million raised in funding for the company, it's safe to say that Slack will continue to
be a driving force in the team productivity space in the years to come.

Slack as a platform
What many users perhaps don't know about Slack is that underneath the messaging
client, a highly extensible platform exists that can be used to create apps and
business tools that can simplify the development cycle, perform complex tasks,
or just be downright silly.

Slack's UI with its own Slack bot in action

http://expandedramblings.com/index.php/slack-statistics/
http://expandedramblings.com/index.php/slack-statistics/
http://fortune.com/2015/12/15/slack-app-investment-fund/
http://fortune.com/2015/12/15/slack-app-investment-fund/

Chapter 1

[3]

This platform or API can be utilized to integrate third-party services into Slack's
platform and leverage their extensive reach and user friendly interface. The said
third-party applications can send data into Slack via incoming webhooks, execute
actions outside of Slack with commands, or respond to commands as a bot user. The
bot user or bot is the most interesting; they are so named as they can mimic human
users by performing the same actions that any human can.

Slack bots are software applications that run on the Slack Real Time
Messaging (RTM) platform. Bots can be used to interact with external
applications or your custom code in a conversational manner.

Some of the more popular bots include GitHub's multitasking Hubot (https://
hubot.github.com/) and Meekan's scheduling bot (http://meekan.com/slack/),
but many more of varying complexity are developed each day.

The most obvious and well known bot is Slack's own Slack bot, used for built-in
Slack functions such as:

•	 Sending feedback to Slack
•	 Scheduling reminders
•	 Printing a list of all users in a channel

Another widely popular bot is Hubot. Originally developed by GitHub and ported
to Slack by Slack themselves, Hubot can provide useful functionality such as GitHub
activity tracking, which can keep you up to date with GitHub repositories.

GitHub integration showing branch and pull request activity

https://hubot.github.com/
https://hubot.github.com/
http://meekan.com/slack/

Getting Started with Slack

[4]

You can also add infrastructure monitoring through Jenkins:

Jenkins integration bot showing build automation logs in Slack

Bots can transform Slack from a simple messaging client to an important business
tool, benefitting any company that uses custom bots unique to their workflow.
The beauty of the Slack platform is that anyone can create a functional bot in a few
simple steps.

The end goal
Upon completing this book, the reader will be able to build a complex Slack bot that
can perform the following tasks, amongst other things:

•	 Receive and send message sent in Slack
•	 Respond to user commands
•	 Process natural language
•	 Perform useful tasks on command (for example, fetch data from

external sources)
•	 Insert custom data into Slack via webhooks and slash commands

Summary
This chapter gave you an overview on what Slack is, why it is noteworthy, and how
its platform can be leveraged to create a myriad of useful apps. The next chapter will
show you how to build your first simple Slack bot.

[5]

Your First Bot
Readers will be amazed at how few lines of code are required to get a basic bot up
and running in their Slack environment. This chapter will walk the reader through
the basics of building a Slack bot:

•	 Preparing your environment
•	 Creating a Slack API token
•	 Connecting your bot
•	 Joining a channel
•	 Sending a message to a channel
•	 Basic responses
•	 Sending a direct message
•	 Restricting access
•	 Debugging your bot

Although some of the concepts first outlined will be known to a more advanced
reader, it is still recommended to read through the first few sections of this chapter to
ensure that your environment is up and ready to go.

In this chapter, we will build a bot that performs the following actions:

•	 Connects to your Slack team
•	 Says hello to all the members of a channel after successfully connecting,

distinguishing between real users and bot users
•	 Responds to users saying hello
•	 Sends a direct message to users who ask for the total amount of time the bot

has been running (also known as uptime)
•	 Ensures that only administrative users can request the bot's uptime

Your First Bot

[6]

Preparing your environment
Before we can get started with the first bot, the programming environment must be
set up and configured to run Node.js applications and packages. Let's start at the
very beginning with Node.

In brief, Node.js (also referred to as Node) is a JavaScript runtime built on Chrome's
v8 JavaScript Engine. In practice, this means that JavaScript can be run outside
of the usual browser environment, making JavaScript both a frontend and
backend language.

Google Chrome's v8 JavaScript engine ensures that your JavaScript code runs fast
and efficiently. Unlike in the world of browsers (and excepting Node versions),
Node is maintained by a single open source foundation with hundreds of volunteer
developers. This makes developing for Node much simpler than for browsers
as you will not run into problems with varying JavaScript implementations
across platforms.

In this book, we will be using major Version 5 (any version starting with 5) of Node.
This allows us to use the newly implemented features of ECMAScript 2015 (better
known as ES2015 or ES6). Whenever an ES6 feature is used in this book for the first
time, look for the accompanying code comment for a brief explanation on the feature.

Although many are implemented, not all ES6 features are currently
available in Node and some are only available in strict mode. For more
information, please visit the Node ES6 guide: https://nodejs.org/
en/docs/es6/.

This section will briefly explain how to install Node.js and the Slack API on your
development machine.

Installing Node.js
To install Node.js, head to the official Node website, https://nodejs.org/,
download a v5 version and follow the onscreen instructions.

To test whether the installation succeeded, open up a terminal, type the following,
and then hit Enter:

node

https://nodejs.org/en/docs/es6/
https://nodejs.org/en/docs/es6/
https://nodejs.org/

Chapter 2

[7]

If node installed correctly, you should be able to type JavaScript commands and see
the result:

Hello World in Node.js

Hit Ctrl + C twice to exit Node.

Installing the development tools using NPM
Node Package Manager (NPM) is Node.js' package ecosystem and the tool used to
install Node packages. As of the time of writing, there are more than 240,000 NPM
packages available for download, with more being added every day.

Fortunately, NPM is automatically installed once the Node installation is complete.
Let's start by installing a useful Node development tool called nodemon (http://
nodemon.io/). Run the following in your terminal or command prompt:

npm install -g nodemon

This command will install the nodemon package globally (note the -g flag), meaning
it can be run from any location on your computer. After the install command, you
must specify the package you wish to install and can optionally select some flags that
configure how the package is installed. Later on, we'll explore flags such as --save
and --save-dev and their uses.

nodemon is a Node utility that will monitor any changes in your code and
automatically restart your Node process. For our purposes, this will save us
from having to stop the Node process and restart it every time we make a
change to our code.

To demonstrate nodemon, let's look at an example. In your code editor of choice,
paste the following and save it as hello-world.js:

console.log('Hello World!');

http://nodemon.io/
http://nodemon.io/

Your First Bot

[8]

In your terminal, run the following:

nodemon hello-world.js

Your output should look like this:

The same Hello World as before but using nodemon

Note how the console command ran and then the program exited. nodemon then
enters "watch mode", where it will wait for any files (indicated by the *.* wildcard)
to change and then subsequently restart the Node process. nodemon can be further
customized to watch or ignore specific files. Visit the website http://nodemon.io/
for more information.

To manually restart the Node process without changing a file that
nodemon watches, type rs followed by the Enter key.

Creating a new project
Now that the basics of Node and NPM are covered, we will look at creating a new
Node project and expanding our knowledge of NPM.

A Node project can contain dependencies and development dependencies. The
former are segments of code (or packages) that are required to run the project
whereas the latter are segments of code used solely for development. In our previous
example, nodemon would be considered a development dependency, as it would not
be used in a production environment.

The dependencies of a Node project are stored in a JavaScript Object Notation
(JSON) file named package.json. The JSON file contains information about the
Node project, including a list of dependencies, the versions of the dependencies,
and information about the package author(s). This allows easy installation of a
project via NPM.

http://nodemon.io/

Chapter 2

[9]

Let's create one of our own. Open up a terminal window and create a new folder by
typing in the following and hitting Enter:

mkdir helloWorld && cd helloWorld

This creates a new directory and navigates to said directory. Next, enter the
following:

npm init

Follow the onscreen prompts and you will end up with something like this:

Example of NPM init running successfully

Your First Bot

[10]

Once completed, you'll find that a package.json file has been created in your
directory; see the preceding screenshot for an example of what that JSON
file contains.

Now that we've created a template for our app, let's create an entry point JavaScript
file and install some dependencies:

touch index.js

npm install @slack/client –-save

These commands create an empty JavaScript file named index and install the Slack
Real Time Messaging (RTM) client. Note how @slack/client now appears under
dependencies in package.json. This is due to the --save flag used in the last
command. The save flag indicates that this NPM package is required to run this app.

As of Version 2, the Slack client API has moved to using NPM
organizations. Indicated by the @ character in the package name, this
means that Slack (the company) can publish packages under the umbrella
organization of @slack. Other than the additional character, the package
does not differ from other, non-organization packages.

Should you wish to distribute your bot and allow others to work on or with it, you
can easily install all required packages as dictated in package.json by running npm
install in the project's directory.

Alternatively to the save flag, you can specify that a package is only required
for development by using the --save-dev flag. This will add the package to the
devDependencies section in package.json. This allows us to specify that this
package only needs to be installed if the user intends to do some development.

This is particularly useful for servers running your code, where you would want to
omit development packages altogether.

Your package.json file should now look something like this:

{
 "name": "helloworld",
 "version": "1.0.0",
 "description": "My first Slack bot!",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },

Chapter 2

[11]

 "author": "Paul Asjes",
 "license": "ISC",
 "dependencies": {
 "@slack/client": "^2.0.6",
 }
}

Now that the Slack client is listed as a dependency, it will be automatically installed
when the following command is run from within this directory:

npm install

You can test this by deleting the node_modules folder and then running the
preceding command:

All our dependencies are installed

Note how the slack-client package has its own dependencies, which were
automatically installed into the node_modules folder.

Your First Bot

[12]

Now, we will add some code to our entry point JavaScript file. Open up index.js
and enter the following code:

// Enable strict mode, this allows us to use ES6 specific syntax
// such as 'const' and 'let'
'use strict';

// Import the Real Time Messaging (RTM) client
// from the Slack API in node_modules
const RtmClient = require('@slack/client').RtmClient;

// The memory data store is a collection of useful functions we
// can
// include in our RtmClient
const MemoryDataStore = require('@slack/client').MemoryDataStore;

// Import the RTM event constants from the Slack API
const RTM_EVENTS = require('@slack/client').RTM_EVENTS;

// Import the client event constants from the Slack API
const CLIENT_EVENTS = require('@slack/client').CLIENT_EVENTS;

const token = '';

// The Slack constructor takes 2 arguments:
// token - String representation of the Slack token
// opts - Objects with options for our implementation
let slack = new RtmClient(token, {
 // Sets the level of logging we require
 logLevel: 'debug',
 // Initialize a data store for our client, this will
 // load additional helper functions for the storing
 // and retrieval of data
 dataStore: new MemoryDataStore(),
 // Boolean indicating whether Slack should automatically
 // reconnect after an error response
 autoReconnect: true,
 // Boolean indicating whether each message should be marked as
 // read
 // or not after it is processed
 autoMark: true
});

// Add an event listener for the RTM_CONNECTION_OPENED
// event, which is called

Chapter 2

[13]

// when the bot connects to a channel. The Slack API can
// subscribe to events by using the 'on' method
slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 // Get the user's name
 let user = slack.dataStore.getUserById(slack.activeUserId);

 // Get the team's name
 let team = slack.dataStore.getTeamById(slack.activeTeamId);

 // Log the slack team name and the bot's name, using ES6's
 // template
 // string syntax
 console.log(`Connected to ${team.name} as ${user.name}`);
});

// Start the login process
slack.start();

Save the file and run the program by executing the following command:

node index.js

You should immediately notice that something is wrong:

Debug and error logs are shown

Notice how the built-in logger outputs both debug and error messages. The error
indicates that Slack cannot connect due to an authentication error. This is because we
have not provided a Slack API token. The access token is a unique ID generated for
your bot. By using it, you enable your bot to authenticate with Slack's servers and
interact with the Slack client.

In our example, the token is set to an empty string, which will not work. Let's then
retrieve an access token from Slack.

Your First Bot

[14]

Detailed steps to download the code bundle are mentioned in the
Preface of this book. Please have a look.
The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Building-
Slack-Bots. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Creating a Slack API token
Open up a browser and navigate to https://my.slack.com/apps/build/custom-
integration.

Follow these steps:

1.	 Select Bots from the list of available custom integrations.

Custom integrations list

2.	 Select a name and click on Add Bot Integration. The name of your bot
can be changed later, so don't worry about picking a well thought-out
name immediately.

https://github.com/PacktPublishing/Building-Slack-Bots
https://github.com/PacktPublishing/Building-Slack-Bots
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://my.slack.com/apps/build/custom-integration
https://my.slack.com/apps/build/custom-integration

Chapter 2

[15]

Adding a bot integration

3.	 Copy down the newly generated API token. As an optional step, you can
choose to customize the bot further in this screen.

Optional settings for your bot

Your First Bot

[16]

Although optional, it is recommended to choose an icon for
your bot. For this example, we will use the robot_face
emoji; however, a good bot should have an icon that
represents the purpose of the bot.

Although you can give bots duplicate first and last names, the bot's
username must be unique to your team. Providing a first name, last name,
and description is optional but advisable as it provides information at a
glance on what your bot does.

4.	 Click on Save Integration at the bottom of the page.

If you wish to remove or disable this bot at a later stage, you
can do that from this same page.

Connecting a bot
Now that we've generated an API token, replace the empty string assigned to token
in index.js and run the program again.

Now is a good time to use nodemon rather than node to ensure automatic
restarts when code is changed.

You will probably see a whole page of debug information show up. While useful,
this can also hinder our progress as our own console logs might be difficult to spot.
Instead of playing hide and seek, let's first change our logging settings in the client.

Switch this line:

logLevel: 'debug',

Use the following line:

logLevel: 'error',

This will instruct the client to only output error messages when the program crashes
or a syntax error occurs.

Chapter 2

[17]

Restart the program (or just save the file and let nodemon do the work):

[Thu Jan 07 2016 20:56:07 GMT-0500 (EST)] INFO Connecting...

Connected to Building Bots as awesomebot

If you see something similar to the preceding output in your terminal,
congratulations! Your first bot is successfully connected to Slack! You will now see
your bot in the Direct Messages section of your Slack client; click on the bot's name
to open a private direct message.

Throughout this book, you will encounter the title Building Bots. This
is simply the title of the Slack team the author used and will be different
from your own.

A direct message (DM) with your bot

Your bot is alive and well. However, it is fairly limited in its abilities. We will remedy
that shortly, but first let's ensure that the bot can interact with a wider audience.

Joining a channel
Bots cannot join channels programmatically; this is a design choice as bots should
not be allowed to enter private channels without being invited. When a bot joins
a channel, all the channel's activity can be monitored by the bot. A bot could
potentially save all channel messages, a potentially nefarious activity that shouldn't
be allowed to happen automatically.

Your First Bot

[18]

For a complete list of what actions bots can and cannot perform, see the Slack bot
user documentation at https://api.slack.com/bot-users.

Bots are restricted in the actions they can perform themselves. As such, bots need to
be invited to channels via the invite command within the Slack client:

/invite [BOT_NAME]

After this, you'll get confirmation of the bot entering the channel like this:

The bot enters the world

Note that when a bot joins a channel, it remains there even if the bot's Node process
is stopped. It shows the same characteristics as an offline user. This ensures that
invitation needs only to happen once per bot and per channel.

To remove a bot from a channel, use the remove command within the Slack client:

/remove [BOT_NAME]

Although all users can invite into a channel, only admins can actively
remove users and bots from channels.

To make testing easier and to not disrupt other users in your team, it is a good idea
to create a bot testing channel and invite your bot. For the purposes of this book, the
testing channel is named bot-test.

Sending a message to a channel
We now have a connected bot, but it admittedly is a rather useless one. Let's remedy
that by getting our bot to say "Hello" to every channel that it resides in.

The slack object
You might have noticed the following on line 18 in the preceding code example:

let user = slack.dataStore.getUserById(slack.activeUserId);

https://api.slack.com/bot-users

Chapter 2

[19]

Here, we see that the slack object contains a myriad of information about the bot's
current environment. Let's explore the data contained within. Replace line 18 with
this modified console.log method:

console.log(slack);

You should see a large object printed out in your terminal. While we won't go
through all the values, here are some of interest:

Name Type Function
activeUserId String The internal user ID. This can be used to get

more information about the current user.
activeUserId String The internal team ID. Again, it can be used to

get more information about the team.
dataStore Object If a data store is initialized, this object contains

a myriad of information stored within the
Slack API.

channels (child of
dataStore)

Object Contains a list of all the channels available in
this team.

channel (child of channels) Object Contains further info on the channel. Whether
the user requesting this information is a
member or not is available through the is_
member property

dms (child of dataStore) Object A list of all the direct message channels this
user is a part of. Note: even if no messages
were ever sent the direct message channel is
still considered open.

users (child of dataStore) Object A list of all users in this team.

Getting all the channels
You'll note from the preceding table that the channels object returns all the channels
in this team. For our purposes, we only want the channels in which our bot resides.
To achieve this, we can loop through the channels object and return exactly what
we need. Add the following to the end of index.js:

// Returns an array of all the channels the bot resides in
function getChannels(allChannels) {
 let channels = [];

 // Loop over all channels
 for (let id in allChannels) {

Your First Bot

[20]

 // Get an individual channel
 let channel = allChannels[id];

 // Is this user a member of the channel?
 if (channel.is_member) {
 // If so, push it to the array
 channels.push(channel);
 }
 }

 return channels;
}

Now, replace the Slack open event listener with this:

// Add an event listener for the RTM_CONNECTION_OPENED event,
// which is called when the bot
// connects to a channel. The Slack API can subscribe to
// events by using the 'on' method
slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 // Get the user's name
 let user = slack.dataStore.getUserById(slack.activeUserId);

 // Get the team's name
 let team = slack.dataStore.getTeamById(slack.activeTeamId);

 // Log the slack team name and the bot's name, using ES6's
 // template string syntax
 console.log(`Connected to ${team.name} as ${user.name}`);

 // Note how the dataStore object contains a list of all
 // channels available
 let channels = getChannels(slack.dataStore.channels);

 // Use Array.map to loop over every instance and return an
 // array of the names of each channel. Then chain Array.join
 // to convert the names array to a string
 let channelNames = channels.map((channel) => {
 return channel.name;
 }).join(', ');

 console.log(`Currently in: ${channelNames}`)
});

Chapter 2

[21]

Switch to your terminal and you should see the following output:

Listing the channels the bot resides in

Now that your bot knows which channels it's in, it can start to send messages. We'll
start with the bot sending a simple "Hello" message to everyone in the channel.

Getting all members in a channel
We have the channel object, so getting the members within is easy. Add this to the
RTM_CONNECTION_OPENED event listener:

// log the members of the channel
channels.forEach((channel) => {
 console.log('Members of this channel: ', channel.members);
});

This is the result:

A list of user IDs

Well that wasn't quite what we expected, perhaps. The Slack API has returned a
list of user IDs rather than an array of member objects. This makes sense as a large
channel containing several hundred users would result in an unwieldy and large
array of member objects. Not to worry, the Slack API provides us with the tools we
need to get more information by using these user IDs. Replace the previous snippet
with this and then save the file:

 // log the members of the channel
 channels.forEach((channel) => {
 // get the members by ID using the data store's
 //'getUserByID' function
 let members = channel.members.map((id) => {
 return slack.dataStore.getUserById(id);
 });

Your First Bot

[22]

 // Each member object has a 'name' property, so let's
 // get an array of names and join them via Array.join
 let memberNames = members.map((member) => {
 return member.name;
 }).join(', ');

 console.log('Members of this channel: ', memberNames);
 });

The output for this code can be seen in the following screenshot:

The users of the channel using their usernames

Notice how the bot is also listed in the channel members list. Our current goal is to
say hello to everyone in the channel; however, we should try to avoid having the bot
talking to itself.

We can use the is_bot property on the member object to determine whether a user is
a bot:

 // log the members of the channel
 channels.forEach((channel) => {
 // get the members by ID using the data store's
 // 'getUserByID' function
 let members = channel.members.map((id) => {
 return slack.dataStore.getUserById(id);
 });

 // Filter out the bots from the member list using Array.filter
 members = members.filter((member) => {
 return !member.is_bot;
 });

 // Each member object has a 'name' property, so let's
 // get an array of names and join them via Array.join
 let memberNames = members.map((member) => {
 return member.name;
 }).join(', ');

 console.log('Members of this channel: ', memberNames);
 });

Chapter 2

[23]

The users of the channel, without bots

Wonderful! Now that we are done with this, the next step is to send a message to
the channel.

Sending a message to a channel
The channel object contains all the tools required for bot communication. In the
following code, we will build upon the previous code snippets and send a "Hello"
message addressing each person in the channel once the bot connects. All of these
actions will happen in the open event listener. Here it is in its entirety:

// Add an event listener for the RTM_CONNECTION_OPENED event,
// which is called when the bot connects to a channel. The Slack API
// can subscribe to events by using the 'on' method
slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 // Get the user's name
 let user = slack.dataStore.getUserById(slack.activeUserId);

 // Get the team's name
 let team = slack.dataStore.getTeamById(slack.activeTeamId);

 // Log the slack team name and the bot's name, using ES6's
 // template string syntax
 console.log(`Connected to ${team.name} as ${user.name}`);

 // Note how the dataStore object contains a list of all
 // channels available
 let channels = getChannels(slack.dataStore.channels);

 // Use Array.map to loop over every instance and return an
 // array of the names of each channel. Then chain Array.join
 // to convert the names array to a string
 let channelNames = channels.map((channel) => {
 return channel.name;
 }).join(', ');

 console.log(`Currently in: ${channelNames}`)

Your First Bot

[24]

 // log the members of the channel
 channels.forEach((channel) => {
 // get the members by ID using the data store's
 // 'getUserByID' function
 let members = channel.members.map((id) => {
 return slack.dataStore.getUserById(id);
 });

 // Filter out the bots from the member list using Array.filter
 members = members.filter((member) => {
 return !member.is_bot;
 });

 // Each member object has a 'name' property, so let's
 // get an array of names and join them via Array.join
 let memberNames = members.map((member) => {
 return member.name;
 }).join(', ');

 console.log('Members of this channel: ', memberNames);

 // Send a greeting to everyone in the channel
 slack.sendMessage(`Hello ${memberNames}!`, channel.id);
 });
});

As soon as you run the code, you should be greeted by a notification from
the Slack client that you have been mentioned in a message, as shown in the
following screenshot:

Our bot speaks its first words

Chapter 2

[25]

Let's ramp up our bot's complexity by giving it the ability to respond to messages.

Basic responses
The Slack API can be configured to execute methods once certain events are
dispatched, as seen earlier with the RTM_CONNECTION_OPENED event. Now,
we will dive into other useful events provided to us.

The authenticated event
So far, we have seen how to add functionality to Slack's RTM_CONNECTION_OPENED
event triggered by the bot entering a channel and an error occurring, respectively. If
you wish to execute some code when a bot logs in but before it connects to a channel,
you can use the AUTHENTICATED event:

slack.on(CLIENT_EVENTS.RTM.AUTHENTICATED, (rtmStartData) => {
 console.log(`Logged in as ${rtmStartData.self.name} of team
 ${rtmStartData.team.name}, but not yet connected to a channel`);
});

This gives the following output:

[Mon Jan 18 2016 21:37:24 GMT-0500 (EST)] INFO Connecting...

Logged in as awesomebot of team Building Bots, but not yet connected to a
channel

Now, we will introduce the message event.

Using the message event
The message event will trigger every time a message is sent to a channel the bot is in
or in a direct message to the bot. The message object contains useful data such as the
originating user, the originating channel, and the timestamp it was sent.

Paste the following into index.js and then send the message "Hello bot!" to a
channel that your bot is a member of:

slack.on(RTM_EVENTS.MESSAGE, (message) => {
 let user = slack.dataStore.getUserById(message.user)

 if (user && user.is_bot) {
 return;
 }

Your First Bot

[26]

 let channel = slack.dataStore.
 getChannelGroupOrDMById(message.channel);

 if (message.text) {
 let msg = message.text.toLowerCase();

 if (/(hello|hi) (bot|awesomebot)/g.test(msg)) {
 slack.sendMessage(`Hello to you too, ${user.name}!`,
 channel.id);
 }
 }
});

This should result in something like this:

A more personal greeting from the bot

Let's look at the code again in detail, starting from the top:

slack.on(RTM_EVENTS.MESSAGE, (message) => {
 let user = slack.dataStore.getUserById(message.user)

 if (user && user.is_bot) {
 return;
}

This should be familiar, as it's similar to what we've used before, except we're
now using the MESSAGE event from the RTM_EVENTS object. We also make sure the
message sender isn't a bot:

 let channel = slack.dataStore.
 getChannelGroupOrDMById(message.channel);

Chapter 2

[27]

The getChannelGroupOrDMById method lets us grab the channel for every message
sent. This is particularly useful if our bot happens to inhabit multiple channels. The
code is as follows:

if (message.text) {
 let msg = message.text.toLowerCase();

 if (/(hello|hi) (bot|awesomebot)/g.test(msg)) {
 slack.sendMessage(`Hello to you too, ${user.name}!`,
 channel.id);
 }
}

A message does not necessarily contain text; it is also possible that the message is
a file, an image, or even an emoji. Therefore, we have to do a little type checking to
make sure the message received is indeed text based. Once the text type is confirmed,
we use a regular expression to test whether the message received contains certain
keywords in a specific order. The RegExp.test method will return true when the
message received contains the words "Hello" or "Hi" followed by either "bot" or
"awesomebot." If true, a response is sent back to the channel using the familiar
slack.sendMessage method.

When evaluating incoming text, it is almost always a good idea to first
convert the body of the text message to lowercase in order to avoid case
sensitive errors.

Avoiding spam
Infinite loops happen occasionally when developing; it is entirely possible that
you accidentally program a bot to send a message in an infinite loop, flooding the
channel with spam. Observe the following code:

if (/(hello|hi) (bot|awesomebot)/g.test(msg)) {
 // Infinite loop spamming the channel every 100 milliseconds
 setInterval(() => {
 slack.sendMessage('Spam!', channel.id);
 }, 100);
}

Your First Bot

[28]

Take a look at the screenshot of the result:

A bot spamming the channel

In the terminal or command prompt, you should see this:

The Slack API deals with the spam

Luckily, the Slack API has a built in guard against such unfortunate events. If 20
messages are sent by a single user in a very short time frame, the Slack server will
refuse to post more messages and return an error. This has the added effect of
causing our bot to get stuck and eventually crash.

The Slack platform will guard against spam attacks flooding the channel; however,
it is likely that the offending bot will crash.

To prevent this from happening, it is highly advisable to never place a slack.
sendMessage method call within a loop or within a setInterval method.

Chapter 2

[29]

Channels with many users and thus high volume could potentially lead to
accidentally triggering the "slow down" response from the Slack platform.
To prevent this, keep track of the time difference between messages:

if (/(hello|hi) (bot|awesomebot)/g.test(msg)) {
 // Get the timestamp when the above message was sent
 let sentTime = Date.now();

 setInterval(() => {
 // Get the current timestamp
 let currentTime = Date.now();

 // Make sure we only allow a message once a full second has
 // passed
 if ((currentTime - sentTime) > 1000) {

 slack.sendMesssage('Limiting my messages to 1 per second',
 channel.id);

 // Set the new sentTime
 sentTime = Date.now();
 }
 }, 100);
}

Limiting the bot's messages

Your First Bot

[30]

Every time the setInterval function is called, we generate a new timestamp
called currentTime. By comparing currentTime to the timestamp of the message
(defined as sentTime), we can artificially limit the messages being sent on the bot
side by making sure the difference between the two is more than 1,000 milliseconds
in length.

The Slack API provides a timestamp on the channel object accessible via channel.
latest.ts; this provides a timestamp for the latest message received in the channel.
While still useful, it is recommended to use local timestamps instead, as the Slack
API provides information on the latest message received rather than the latest
message sent by the bot.

Sending a direct message
A direct message (DM) channel is a channel that only operates between two users.
By design, it cannot have more or less than two users and is meant for private
communication. Sending a DM is remarkably similar to sending a message to a
channel, as the dm object is almost identical to the channel object.

Consider the following snippet:

slack.on(RTM_EVENTS.MESSAGE, (message) => {
 let user = slack.dataStore.getUserById(message.user)

 if (user && user.is_bot) {
 return;
 }

 let channel = slack.dataStore.
 getChannelGroupOrDMById(message.channel);

 if (message.text) {
 let msg = message.text.toLowerCase();

 if (/uptime/g.test(msg)) {
 let dm = slack.dataStore.getDMByName(user.name);

 let uptime = process.uptime();

 // get the uptime in hours, minutes and seconds
 let minutes = parseInt(uptime / 60, 10),
 hours = parseInt(minutes / 60, 10),

Chapter 2

[31]

 seconds = parseInt(uptime - (minutes * 60) - ((hours *
 60) * 60), 10);

 slack.sendMessage(`I have been running for: ${hours} hours,
 ${minutes} minutes and ${seconds} seconds.`, dm.id);
 }
});

In this example, our bot will send a DM with the current uptime to any user who
uses the key phrase uptime:

Uptime can be a very useful statistic

Note that the bot will send a DM to the user, regardless of which channel the
command uptime is sent as long as the bot is around to hear the command as a
member of that channel or DM. In the preceding image, the command was issued
in the DM itself. This is because both channels and DMs subscribe to the message
event; it is important to remember this when sending responses meant for channels
rather than DMs and vice versa.

Restricting access
Occasionally, you might wish to restrict bot commands to administrators of your
Slack team. A good example is a bot that controls a project's deploy process. This can
be immensely powerful but perhaps not something that you want every user to have
access to. Only administrators (also known as admins) should have the authority to
access such functions. Admins are special users who have administrative powers
over the Slack team. Luckily, restricting such access is easy with the is_admin
property attached to a user object.

In the following example, we'll restrict the uptime command demonstrated in
the previous topic to admin users, notifying the restricted user that they can't
use that command:

slack.on(RTM_EVENTS.MESSAGE, (message) => {
 let user = slack.dataStore.getUserById(message.user)

Your First Bot

[32]

 if (user && user.is_bot) {
 return;
 }

 let channel = slack.dataStore.
 getChannelGroupOrDMById(message.channel);

 if (message.text) {
 let msg = message.text.toLowerCase();

 if (/uptime/g.test(msg)) {
 if (!user.is_admin) {
 slack.sendMessage(`Sorry ${user.name}, but that
 functionality is only for admins.`, channel.id);
 return;
 }

 let dm = slack.dataStore.getDMByName(user.name);

 let uptime = process.uptime();

 // get the uptime in hours, minutes and seconds
 let minutes = parseInt(uptime / 60, 10),
 hours = parseInt(minutes / 60, 10),
 seconds = parseInt(uptime - (minutes * 60) - ((hours *
 60) * 60), 10);

 slack.sendMessage(`I have been running for: ${hours} hours,
 ${minutes} minutes and ${seconds} seconds.`, dm.id);
 }
});

Now when non-admin users issue the uptime command, they will get the following
message:

Restricting the bot to admin users

Chapter 2

[33]

The use of user.is_admin is to determine whether a user
is an admin or not.

Adding and removing admins
To add or remove admins to your team, visit https://my.slack.com/
admin#active and click on a user.

Admins and owners have the ability to kick other members from channels and to
delete messages that aren't their own. Although these are the default settings, they
can be edited at https://my.slack.com/admin/settings#channel_management_
restrictions.

Bots cannot be admins or owners; for more information on team permissions, visit
https://get.slack.help/hc/en-us/articles/201314026-Understanding-
roles-permissions-inside-Slack.

Debugging a bot
It is inevitable that eventually you will encounter a bug in your bot that is difficult
to squash. The worst are bugs that don't cause your program to crash and thus don't
provide a useful stack trace and line number for where the crash happened. For most
issues, the console.log() method will be enough to help you track down the bug,
for the more tenacious bugs however we will need a true debugging environment.
This section will introduce you to iron-node (https://s-a.github.io/iron-
node/), a cross-platform JavaScript debugging environment based on Chrome's
dev tools.

Start by installing iron-node:

npm install -g iron-node

Note again the use of the -g flag, which installs the application globally.

Before we can start debugging, we need to add a breakpoint to our code, which tells
the debugger to stop the code and allow for deeper inspection. Add the debugger
statement to our previous code, within the slack.openDM() code block:

if (/uptime/g.test(msg)) {
 debugger;

 if (!user.is_admin) {

https://my.slack.com/admin#active
https://my.slack.com/admin#active
https://my.slack.com/admin/settings#channel_management_restrictions
https://my.slack.com/admin/settings#channel_management_restrictions
https://get.slack.help/hc/en-us/articles/201314026-Understanding-roles-permissions-inside-Slack
https://get.slack.help/hc/en-us/articles/201314026-Understanding-roles-permissions-inside-Slack
https://s-a.github.io/iron-node/
https://s-a.github.io/iron-node/

Your First Bot

[34]

 slack.sendMessage(`Sorry ${user.name}, but that functionality
 is only for admins.`, channel.id);
 return;
 }

 let dm = slack.dataStore.getDMByName(user.name);

 let uptime = process.uptime();

 // get the uptime in hours, minutes and seconds
 let minutes = parseInt(uptime / 60, 10),
 hours = parseInt(minutes / 60, 10),
 seconds = parseInt(uptime - (minutes * 60) - ((hours * 60) *
 60), 10);

 slack.sendMessage(`I have been running for: ${hours} hours,
 ${minutes} minutes and ${seconds} seconds.`, dm.id);
}

Save the file and then run the code via iron-node in your terminal:

iron-node index.js

Immediately, you should see the iron-node interface pop up:

The iron-node interface

Chapter 2

[35]

Chrome users will perhaps notice that this interface is exactly like Chrome's
developer tools window. It is advisable to spend some time familiarizing yourself
with this interface if you haven't used it before. Let's discuss some basic functionality
to get you started.

You can switch to the console tab to see the node output, or you can also hit Esc to
show the console at the bottom of the screen.

Our debugger was placed within a message event listener, so send a command to the
bot (uptime in the last example) and watch what happens next.

Setting a breakpoint with the "debugger" statement

The bot's execution has been paused by the debugger, so you can inspect properties
and determine the source of the bug.

Either click on the Step over button in the top-right corner, symbolized by an arrow
curving around a dot, or hit F10 to step over to the next line.

Your First Bot

[36]

Use your mouse to hover over the different objects in this line of code to retrieve
more information about them.

Inspecting a property in the paused program

Keep clicking on the Step over button to progress through the code, or click on
the Resume script execution button to the left of the Step over button to allow the
program to continue until it encounters another debugger breakpoint.

Not only can you inspect variables and properties while the bot is executing, but you
can also edit their values, causing different outputs. Observe how we can edit the
uptime variable in our code and set it to 1000:

uptime is set by the program to 40.064

In the console area, we can edit JavaScript variables whilst the program is running:

Chapter 2

[37]

In the console, we check the value of uptime again, and then set it to a value of 1000.
Now when we look back at the variables, we should see the updated values:

The new value of uptime is reflected in the next few lines

When we resume the program, our bot will send its message based on our
updated variables:

We continue the program and the bot sends the new values to the channel.

For best debugging practices, either disable your bot's ability to send
messages or invite your bot to a private channel to avoid spamming
other users.

As iron-node is based on Chrome's developer tools, you can use the previous
techniques interchangeably with Chrome.

To debug and fix memory issues, you can use the developer tools' profiler and heap
snapshot tool. For more information on these topics, please visit the following links:

•	 https://developers.google.com/web/tools/chrome-devtools/
profile/rendering-tools/js-execution

•	 https://developers.google.com/web/tools/chrome-devtools/
profile/memory-problems/?hl=en

Summary
In this chapter, we saw how to install the prerequisite technologies, how to obtain a
Slack token for a bot, and how to set up a new Slack bot project. As a result, you can
reuse the lessons learned to easily scaffold a new bot project. You should now be able
to program a bot that can send messages to channels, direct messages as well as craft
basic responses. Finally, we discussed how to debug a Node.js-based bot using the
iron-node debugger.

In the next chapter, we will see how to make our bot more complex by adding third-
party API support and by programming our first bot command.

https://developers.google.com/web/tools/chrome-devtools/profile/rendering-tools/js-execution
https://developers.google.com/web/tools/chrome-devtools/profile/rendering-tools/js-execution
https://developers.google.com/web/tools/chrome-devtools/profile/memory-problems/?hl=en
https://developers.google.com/web/tools/chrome-devtools/profile/memory-problems/?hl=en

[39]

Adding Complexity
With the first bot done, it's time to learn how to extend our bot with the use of other
application program interfaces (APIs). This means teaching our bot how to listen for
keywords, respond to commands, and deal with errors (human or otherwise). In this
chapter, we will cover the following:

•	 Responding to keywords
•	 Bot commands
•	 External API integration
•	 Error handling

Responding to keywords
In the previous chapter, we used regular expressions to test the contents of the
message against some predefined keywords. Once the keywords were confirmed,
we could perform actions and return the results. This worked well; however, it can
lead to a large if else block for more feature-rich bots. Instead, we will now look
at refactoring the end result of the previous chapter into a more modular design. In
this section, we will accomplish this by using ES6's new class syntax and Node's
export method.

Using classes
Start by creating a new JavaScript file and name it bot.js. Paste the following into
bot.js and save the file:

'use strict';

const RtmClient = require('@slack/client').RtmClient;
const MemoryDataStore = require('@slack/client').MemoryDataStore;

Adding Complexity

[40]

const CLIENT_EVENTS = require('@slack/client').CLIENT_EVENTS;
const RTM_EVENTS = require('@slack/client').RTM_EVENTS;

class Bot {
 constructor(opts) {
 let slackToken = opts.token;
 let autoReconnect = opts.autoReconnect || true;
 let autoMark = opts.autoMark || true;

 this.slack = new RtmClient(slackToken, {
 // Sets the level of logging we require
 logLevel: 'error',
 // Initialize a data store for our client,
 // this will load additional helper
 // functions for the storing and retrieval of data
 dataStore: new MemoryDataStore(),
 // Boolean indicating whether Slack should automatically
 // reconnect after an error response
 autoReconnect: autoReconnect,
 // Boolean indicating whether each message should be marked
 // as read or not after it is processed
 autoMark: autoMark
 });

 this.slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 let user =
 this.slack.dataStore.getUserById(this.slack.activeUserId)
 let team =
 this.slack.dataStore.getTeamById(this.slack.activeTeamId);

 this.name = user.name;

 console.log(`Connected to ${team.name} as ${user.name}`);
 });

 this.slack.start();
 }
}

// Export the Bot class, which will be imported when 'require' is
// used
module.exports = Bot;

Chapter 3

[41]

Let's look at the code in depth, starting with the class structure. The Mozilla
Developer Network (MDN) defines JavaScript classes as:

JavaScript classes are introduced in ECMAScript 6 and are syntactical sugar
over JavaScript's existing prototype-based inheritance. The class syntax is not
introducing a new object-oriented inheritance model to JavaScript. JavaScript
classes provide a much simpler and clearer syntax to create objects and deal with
inheritance.

Simply put, JavaScript classes are an alternative to the prototype-based class pattern,
and in fact function the exact same way under the hood. The benefit to using classes
is when you wish to extend or inherit from a particular class, or provide a clearer
overview of what your class does.

In the code example, we use a class in order to easily extend it later if we wish to add
more functionality. Unique to classes is the constructor method, which is a special
method for creating and initializing an object created with a class. When a class is
called with the new keyword, this constructor function is what gets executed first:

constructor(opts) {
 let slackToken = opts.token;
 let autoReconnect = opts.autoReconnect || true;
 let autoMark = opts.autoMark || true;

 this.slack = new RtmClient(slackToken, {
 logLevel: 'error',
 dataStore: new MemoryDataStore(),
 autoReconnect: autoReconnect,
 autoMark: autoMark
 });

 this.slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 let user = this.slack.dataStore.
 getUserById(this.slack.activeUserId)
 let team = this.slack.dataStore.
 getTeamById(this.slack.activeTeamId);

 this.name = user.name;

 console.log(`Connected to ${team.name} as ${user.name}`);
 });

 this.slack.start();
 }

Adding Complexity

[42]

Looking at our constructor, we see the familiar use of the Slack RTM client: the
client is initialized and the RTM_CONNECTION_OPENED event is used to log the team
and username upon connecting. We attach the slack variable to the this object as
a property, making it accessible throughout our class. Similarly, we assign the bot's
name to a variable, for easy access when required.

Finally, we export the bot class via the Node modules system:

module.exports = Bot;

This instructs Node to return our class when this file is imported using the
require method.

Create a new file in the same folder as bot.js and name it index.js. Paste the
following inside it:

'use strict';

let Bot = require('./Bot');

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

After saving the file, run the following from the terminal to start the bot:

SLACK_TOKEN=[YOUR_TOKEN_HERE] node index.js

You can use the Slack token created in the previous chapter, or generate a new one
for this bot.

It's generally a good idea to not hardcode sensitive information
such as tokens or API keys (such as the Slack token) in your code.
Instead, use Node's process.env object to pass variables from
the command line to your code. Especially, take care of storing API
keys in a public source control repository such as GitHub.

Once you've confirmed that your bot connects successfully to your Slack team, let's
work on making the Bot class more modular.

Chapter 3

[43]

Reactive bots
All the functionality described in our bot examples so far have one thing in common:
the bots react to stimuli provided by human users. A message containing a keyword
is sent and the bot responds with an action. These types of bot can be called reactive
bots; they respond to an input with an output. The majority of bots can be classified
as reactive bots, as most bots require some input in order to complete an action.
An active bot is the opposite of this; rather than responding to input, the active bot
produces output without needing any human stimuli. We will cover active bots in
Chapter 6, Webhooks and Slack Commands. For now, let's look at how we can optimize
our reactive bots.

We already defined the essential mechanism of reactive bots: responding to stimuli.
As this is a core concept of the reactive bot, it makes sense to have a mechanism in
place to easily invoke the desired behavior.

To do this, let's add some functionality to our Bot class in the form of a respondsTo
function. In previous examples, we used the if statements to determine when a bot
should respond to a message:

if (/(hello|hi) (bot|awesomebot)/g.test(msg)) {
 // do stuff...
}

if (/uptime/g.test(msg)) {
 // do more stuff...
}

There is nothing wrong with this approach. If we wish to code a bot that has multiple
keywords, our Bot class can get very complex and cluttered very quickly. Instead,
let's abstract out this behavior to our respondsTo function. The function should take
at least two arguments: the keywords we wish to listen for and a callback function
that executes when the keywords are identified in a message.

In bot.js, add the following to the constructor:

// Create an ES6 Map to store our regular expressions
this.keywords = new Map();

this.slack.on(RTM_EVENTS.MESSAGE, (message) => {
 // Only process text messages
 if (!message.text) {
 return;
 }

Adding Complexity

[44]

 let channel =
 this.slack.dataStore.getChannelGroupOrDMById(message.channel);
 let user = this.slack.dataStore.getUserById(message.user);

 // Loop over the keys of the keywords Map object and test each
 // regular expression against the message's text property
 for (let regex of this.keywords.keys()) {
 if (regex.test(message.text)) {
 let callback = this.keywords.get(regex);
 callback(message, channel, user);
 }
 }
});

This snippet uses the new ES6 Map object, which is a simple key/value store, much
like dictionaries in other languages. Map differs from Object in that Map does not
have default keys (as Object has a prototype), which means that you can iterate over
a Map without having to explicitly check if the Map contains a value or if its prototype
does. For example, with Maps, you no longer have to use Object.hasOwnProperty
when iterating.

As we will see later, the keywords Map object uses regular expressions as a key
and a callback function as the value. Insert the following code underneath the
constructor function:

respondTo(keywords, callback, start) {
 // If 'start' is truthy, prepend the '^' anchor to instruct the
 // expression to look for matches at the beginning of the string
 if (start) {
 keywords = '^' + keywords;
 }

 // Create a new regular expression, setting the case
 // insensitive (i) flag
 let regex = new RegExp(keywords, 'i');

 // Set the regular expression to be the key, with the callback
 // function as the value
 this.keywords.set(regex, callback);
}

This function takes three parameters: keywords, callback, and start. keywords is
the word or phrase we wish to act on in the form of a regular expression. callback
is a function that will be called if the keywords match the message, and start is an
optional Boolean indicating whether we wish to search only at the beginning of the
message string or not.

Chapter 3

[45]

Look back at our newly updated constructor and pay special attention to the
following lines within our message event listener:

// Loop over the keys of the keywords Map object and test each
// regular expression against the message's text property
for (let regex of this.keywords.keys()) {
 if (regex.test(message.text)) {
 let callback = this.keywords.get(regex);
 callback(message, channel, user);
 }
}

Here, we loop through the keywords Map object, which has regular expressions as
its keys. We test each regular expression against the received message and call our
callback function with the message, the channel, and the user that sent the message.

Finally, let's add a sendMessage functionality to our bot class. This will act as a
wrapper for Slack's sendMessage. We don't have to expose the entire Slack object
anymore. Add the following function underneath our constructor:

 // Send a message to a channel, with an optional callback
 send(message, channel, cb) {
 this.slack.sendMessage(message, channel.id, () => {
 if (cb) {
 cb();
 }
 });
 }

Despite having channel as an argument name, our send function will also work for
a DM (a private channel between two people), additionally providing a callback via
the Slack API's sendMessage function.

Now that we have a function that can subscribe to messages and their contents, open
up index.js and let's add a simple "Hello World" implementation:

'use strict';

let Bot = require('./Bot');

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

Adding Complexity

[46]

bot.respondTo('hello', (message, channel, user) => {
 bot.send(`Hello to you too, ${user.name}!`, channel)
}, true);

Save the file, restart your node process, and test out your bot. Here's what it should
look like:

Testing our refactor

The bot responds when our message has the string "hello", but only when it
appears at the beginning of the message due to the true value we passed in
after our callback.

We have now refactored our bot's code to abstract the Slack event system away and
make our code cleaner in the process. Let's do something a little more impressive
with our new system and implement a simple game.

Bot commands
So far, our bots have responded to keywords in messages to say hello or tell us how
long they've been running. These keywords are useful for simple tasks, but for more
complex actions, we need to give the bot some parameters to work with. A keyword
followed by parameters or arguments can be referred to as a bot command. Similar
to the command line, we can issue as many arguments as we want to get the most
out of our bot.

Chapter 3

[47]

Let's test this by giving our bot a new function: a game of chance where the issuer of
the roll command plays a game of who can roll the highest number.

Add the following code to index.js:

bot.respondTo('roll', (message, channel, user) => {
 // get the arguments from the message body
 let args = getArgs(message.text);

 // Roll two random numbers between 0 and 100
 let firstRoll = Math.round(Math.random() * 100);
 let secondRoll = Math.round(Math.random() * 100);

 let challenger = user.name;
 let opponent = args[0];

 // reroll in the unlikely event that it's a tie
 while (firstRoll === secondRoll) {
 secondRoll = Math.round(Math.random() * 100);
 }

 let winner = firstRoll > secondRoll ? challenger : opponent;

 // Using new line characters (\n) to format our response
 bot.send(
 `${challenger} fancies their chances against ${opponent}!\n
 ${challenger} rolls: ${firstRoll}\n
 ${opponent} rolls: ${secondRoll}\n\n
 ${winner} is the winner!`
 , channel);

}, true);

// Take the message text and return the arguments
function getArgs(msg) {
 return msg.split(' ').slice(1);
}

Adding Complexity

[48]

The command is very simple: a user sends the keyword roll followed by the name
of the user they wish to challenge. This is shown in the following screenshot:

A straightforward implementation of the bot's roll command

It works well, but what happens if we omit any arguments to our roll command?

undefined wins the game, which isn't expected behavior

No arguments are provided; therefore, the value at index 0 of our args array
is undefined. Clearly, our bot lacks some basic functionality: invalid argument
error handling.

Chapter 3

[49]

With bot commands, user input must always be sanitized and checked for
errors, lest the bot perform some unwanted actions.

Sanitizing inputs
Add this block underneath our getArgs method call to stop empty rolls
from happening:

 // if args is empty, return with a warning
 if (args.length < 1) {
 channel.send('You have to provide the name of the person you
 wish to challenge!');
 return;
 }

Here's the result:

Awesomebot providing some necessary sanitizing

That's one use case down, but what if someone tries to challenge someone who's
not in the channel? At the moment, the bot will roll against whatever you put as
the first argument, be it a member of the channel or a complete fabrication. This
is an example of where we want to further sanitize and restrict the user input to
useful data.

To fix this, let's make sure that only members of the channel from where the roll
command originated can be targeted.

First, let's add the following method to our Bot class:

getMembersByChannel(channel) {
 // If the channel has no members then that means we're in a DM
 if (!channel.members) {
 return false;
 }

Adding Complexity

[50]

 // Only select members which are active and not a bot
 let members = channel.members.filter((member) => {
 let m = this.slack.dataStore.getUserById(member);
 // Make sure the member is active (i.e. not set to 'away'
 status)
 return (m.presence === 'active' && !m.is_bot);
 });

 // Get the names of the members
 members = members.map((member) => {
 return this.slack.dataStore.getUserById(member).name;
 });

 return members;
 }

This function simply checks to see whether the members property of channel exists,
and returns a list of active non-bot users by name. In index.js, replace your roll
command block with the following code:

bot.respondTo('roll', (message, channel, user) => {
 // get the members of the channel
 const members = bot.getMembersByChannel(channel);

 // make sure there actually members to interact with. If there
 // aren't then it usually means that the command was given in a
 // direct message
 if (!members) {
 bot.send('You have to challenge someone in a channel, not a
 direct message!', channel);
 return;
 }

 // get the arguments from the message body
 let args = getArgs(message.text);

 // if args is empty, return with a warning
 if (args.length < 1) {
 bot.send('You have to provide the name of the person you wish
 to challenge!', channel);
 return;
 }

Chapter 3

[51]

 // does the opponent exist in this channel?
 if (members.indexOf(args[0]) < 0) {
 bot.send(`Sorry ${user.name}, but I either can't find
 ${args[0]} in this channel, or they are a bot!`, channel);
 return;
 }

 // Roll two random numbers between 0 and 100
 let firstRoll = Math.round(Math.random() * 100);
 let secondRoll = Math.round(Math.random() * 100);

 let challenger = user.name;
 let opponent = args[0];

 // reroll in the unlikely event that it's a tie
 while (firstRoll === secondRoll) {
 secondRoll = Math.round(Math.random() * 100);
 }

 let winner = firstRoll > secondRoll ? challenger : opponent;

 // Using new line characters (\n) to format our response
 bot.send(
 `${challenger} fancies their changes against ${opponent}!\n
 ${challenger} rolls: ${firstRoll}\n
 ${opponent} rolls: ${secondRoll}\n\n
 ${winner} is the winner!`
 , channel);

}, true);

Our biggest changes here are that the bot will now check to make sure the command
given is a valid one. It will ensure that by checking the following (listed in order):

1.	 There are members available in the channel.
2.	 An argument was provided after the command.
3.	 Whether the argument was valid, by making sure the name provided is in

the members list of the channel or that the name is not that of a bot.

Adding Complexity

[52]

The important lesson to take away from this exercise is to minimize interruptions by
ensuring that all use cases are handled correctly. Sufficient testing is required to be
certain that you handled all use cases. For instance, in our roll command example,
we missed an important case: users can use the roll command against themselves:

Rolling against yourself probably isn't the most useful of functions

To fix this issue, we need to make a simple addition to our command. Add the
following code in our previous sanitizing checks:

// the user shouldn't challenge themselves
if (args.indexOf(user.name) > -1) {
 bot.send(`Challenging yourself is probably not the best use of
 your or my time, ${user.name}`, channel);
 return;
}

When developing bots, every precaution should be taken to ensure that
bot inputs are sanitized and that error responses give information about
the error. This is especially true when working with external APIs, where
incorrect input could lead to wildly inaccurate results.

External API integration
Eternal APIs are third-party services hosted outside of our bot structure. These come
in many varying types and are used to solve many different problems, but their use
in tandem with bots follows the same data flow structure.

Chapter 3

[53]

The API call data flow structure between Slack, bot, and API service

We will build an example bot with API integration using a common and free-to-use
API, namely that of the Wikimedia foundation.

Be warned that while many APIs are free, there are many that charge
when a certain amount of requests are made. Always check whether there
is a fee before incorporating them into your bots.

The Wikimedia foundation API is an example of a representational state transfer
(REST) service, which communicates using standard Hypertext Transfer Protocol
(HTTP) protocols such as GET or POST. Many RESTful services require you to
transmit a token along with your request, ensuring security and for monetizing
the service by tracking the amount of requests made. The Wikimedia API is a free
RESTful service, meaning that we do not require a token to make use of it.

Our new bot, wikibot, will allow the user to search for a Wikipedia page and return
the page's summary if found, or an error message if it does not exist.

Adding Complexity

[54]

To start, you should follow the steps in Chapter 2, Your First Bot, to create a new Slack
bot integration via the Slack web service and start a new project. This new project
will reuse the Bot class created in this chapter, whereas our new index.js entry
point will be a new, empty file.

We will start with the annotated and explained index.js code. At the conclusion
of the chapter the full code will be made available for easier accessibility. Here's
the code:

'use strict';

const Bot = require('./Bot');
const request = require('superagent');

Here, we import our own Bot class alongside a new library called superagent,
which is used for making asynchronous JavaScript and XML (AJAX) calls.

Before running this code, be sure to install superagent using NPM:

npm install superagent --save

superagent is installed with the –save flag, as the program cannot function
without it.

Let's get back to our code:

const wikiAPI =
"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=
extracts&exintro=&explaintext=&titles="
const wikiURL = 'https://en.wikipedia.org/wiki/';

These constants are the RESTful API Uniform Resource Link (URL) and the base
Wikipedia page URL, respectively. You can test out the former by copying the URL,
pasting it into the address field in a browser, and appending a topic at the end. You
can check this for the following URL: https://en.wikipedia.org/w/api.php?for
mat=json&action=query&prop=extracts&exintro=&explaintext=&titles=duck.

You should then see data returned in the JavaScript object notation (JSON) format,
giving you an overview of the topic requested and the pages returned. The data and
type of data returned is determined by the parameters in the query string of the URL.
In the preceding URL, we query for the extracts property of a page, specifically the
intro (exintro) and explanation (explaintext) for the page with the title duck in
the JSON format.

https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&exintro=&explaintext=&titles=duck
https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&exintro=&explaintext=&titles=duck

Chapter 3

[55]

The latter constant is used later to return the URL for the Wikipedia page requested:

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

As before, we initiate a new instance of Bot with our options and Slack token.
You can reuse the first token created in Chapter 2, Your First Bot. However, it is
recommended to generate a new one instead. The code is as follows:

function getWikiSummary(term, cb) {
 // replace spaces with unicode
 let parameters = term.replace(/ /g, '%20');

This function is a wrapper for the request to the Wikimedia API, in which we format
the request by replacing the spaces in the search term with Unicode and make the
GET request via the superagent library. The code is as follows:

 request
 .get(wikiAPI + parameters)
 .end((err, res) => {
 if (err) {
 cb(err);
 return;
 }

 let url = wikiURL + parameters;

 cb(null, JSON.parse(res.text), url);
 });
}

Adding Complexity

[56]

As this is an asynchronous request, we provide a callback function to be called when
the GET request has returned the data we need. Before returning we make sure to
parse the data into a JavaScript object form for easy access. The code is as follows:

bot.respondTo('help', (message, channel) => {
 bot.send(`To use my Wikipedia functionality, type \`wiki\`
 followed by your search query`, channel);
}, true);

Wikibot explaining how it can be used

The first command we implement is a simple help command; its only function is to
explain how to use the bot's Wikipedia functionality:

bot.respondTo('wiki', (message, channel, user) => {
 if (user && user.is_bot) {
 return;
 }

Set up our new bot command with the keyword wiki and make sure to return if the
command sender is a bot:

 // grab the search parameters, but remove the command 'wiki'
 // from
 // the beginning of the message first
 let args = message.text.split(' ').slice(1).join(' ');

This will extract the search query of the command. For instance if the command is
wiki fizz buzz, the output of args will be a string containing "fizz buzz":

 getWikiSummary(args, (err, result, url) => {
 if (err) {
 bot.send(`I\'m sorry, but something went wrong with your
 query`, channel);
 console.error(err);
 return;
 }

Chapter 3

[57]

Here, we call our getWikiSummary function, with the arguments issued with the bot
command and provide the anonymous function callback. If an error has occurred,
immediately send an error message and log the error in the console. The command is
as follows:

 let pageID = Object.keys(result.query.pages)[0];

The data object returned by the RESTful API call consists of a nested object named
query, which in turn has a nested object called pages. Inside the pages object, there
are more objects that use Wikipedia's internal page ID as a key, which is a series of
numbers in a string format. Let's take a look at an example:

{
 "batchcomplete": "",
 "query": {
 "normalized": [
 {
 "from": "duck",
 "to": "Duck"
 }
],
 "pages": {
 "37674": {
 "pageid": 37674,
 "ns": 0,
 "title": "Duck",
 "extract": "Duck is the common name for a large number of
 species in the waterfowl family Anatidae, which also
 includes swans and geese. The ducks are divided among
 several subfamilies in the family Anatidae; they do not
 represent a monophyletic group (the group of all
 descendants of a single common ancestral species) but a
 form taxon, since swans and geese are not considered
 ducks. Ducks are mostly aquatic birds, mostly smaller than
 the swans and geese, and may be found in both fresh water
 and sea water.\nDucks are sometimes confused with several
 types of unrelated water birds with similar forms, such as
 loons or divers, grebes, gallinules, and coots.\n\n"
 }
 }
 }
}

Adding Complexity

[58]

Object.keys is a useful trick to retrieve data from an object without knowing the
property's name. We use it here as we don't know the key ID for the page that we
want, but we know we want the first value. Object.keys will return an array of key
names for the result.query.pages object. We then select the value at index 0, as
we're only interested in the first result. The code is as follows:

 // -1 indicates that the article doesn't exist
 if (parseInt(pageID, 10) === -1) {
 bot.send('That page does not exist yet, perhaps you\'d like
 to create it:', channel);
 bot.send(url, channel);
 return;
 }

A Wikipedia page ID of -1 indicates that the article doesn't exist at all. Instead of
trying to parse data that doesn't exist, we inform the user of the problem and return.
The code is as follows:

 let page = result.query.pages[pageID];
 let summary = page.extract;

 if (/may refer to/i.test(summary)) {
 bot.send('Your search query may refer to multiple things,
 please be more specific or visit:', channel);
 bot.send(url, channel);
 return;
 }

If the summary text contains the phrase may refer to, then we can conclude that
the search term provided could lead to multiple Wikipedia entries. Since we can't
guess at what the user intended, we simply ask them to be more specific and return.
The code is as follows:

 if (summary !== '') {
 bot.send(url, channel);

Unfortunately, it is possible that an API request returns a summary that is empty.
This is an issue on the Wikimedia API's end where a term returns a page, but the
summary text is missing. In this case, we inform the user of the problem in the else
conditional block of this if statement. The code is as follows:

 let paragraphs = summary.split('\n');

Chapter 3

[59]

The summary might stretch over several paragraphs, so for ease of use we convert
the text block into an array of paragraphs by using the new line ASCII operator \n as
our split criteria. The code is as follows:

paragraphs.forEach((paragraph) => {
 if (paragraph !== '') {
 bot.send(`> ${paragraph}`, channel);
 }
});

Like regular users, bots can use Slack's formatting options when sending messages.
In this instance, we prepend the > operator in front of our paragraph to indicate a
quotation block. The code is as follows:

} else {
 bot.send('I\'m sorry, I couldn\'t find anything on that
 subject. Try another one!', channel);
 }
 });
}, true);

As before, we pass the true Boolean to our respondsTo method of the Bot class to
indicate that we want our keyword wiki to only trigger a response if it is placed at
the beginning of a message.

Once you've entered all the code into index.js, run the program using Node and
test it in your Slack client:

Wikibot is up and running

Adding Complexity

[60]

This is a basic example of how to incorporate external API calls into your bot. Before
we move on to the next section, we should consider the ramifications of complex API
requests. If an API request takes a sizeable amount of time (for example, a service
needs to perform complex calculations), it would be useful for the user to see an
indication that the bot is working on the command. To accomplish this, we can show
a typing indicator while the bot waits for a response. Typing indicators are shown
when a human starts to type a message before hitting send. Add the following
method to the Bot class in bot.js:

 setTypingIndicator(channel) {
 this.slack.send({ type: 'typing', channel: channel.id });
 }

To test our indicator, add the following to index.js:

bot.respondTo('test', (message, channel) => {
 bot.setTypingIndicator(message.channel);

 setTimeout(() => {
 bot.send('Not typing anymore!', channel);
 }, 1000);
}, true);

Now, send the message test in your Slack channel and watch the indicator appear:

Wikibot is busy typing

Chapter 3

[61]

1000 milliseconds later, we get the following result:

Bot is done with the action and the typing indicator has been removed

After the typing indicator is dispatched, it will automatically disappear once a
message has been sent to the channel by the bot.

To use the typing indicator in our example bot, insert the following line above the
getWikiSummary method call:

bot.setTypingIndicator(message.channel);

Keep in mind that since the Wikimedia API call resolves very quickly, it's unlikely
that you'll see the typing indicator for longer than a few milliseconds.

Error handling
Continuing on from the last topic, a good way of making your bot appear more
natural is for it to provide clear instructions on how to use it. Providing the wrong
input for a command should never cause the bot to crash.

Bots should never crash due to user input. Either an error message
should be sent or the request should silently fail.

You can eliminate 99 percent of all bugs in your bot commands by doing valid type
and content checking against the user's input. Observe the following checklist when
programming a new command:

•	 If arguments are required, are any of the arguments undefined?
•	 Are the arguments of the type the bot is expecting? For example, are strings

provided when a number is expected?

Adding Complexity

[62]

•	 If targeting a member of the channel, does that member exist?
•	 Was the command sent in a DM? If so should the command still be executed?
•	 Does the command pass a "sanity" check? For example, does the data or

action requested make sense?

As an example of the preceding checklist, let's review the checks we made with the
roll command earlier in this chapter:

•	 Are there non-bot members in the channel to interact with?
•	 Was an argument supplied?
•	 Was the supplied argument valid?
•	 Is the specified opponent in the channel the command was issued?

Each point is a hurdle that the command's input had to overcome in order to return
the desired result. If any of these questions is answered in the negative, then an error
message is sent and the command process terminated.

These checks might appear lengthy and superfluous, but they are absolutely
necessary to provide a natural experience with the bot.

As a final note, be aware that despite your best efforts, users have an uncanny ability
to cause crashes, intentionally or otherwise.

The more complex your bot becomes, the more likely it is that loopholes and edge
cases will appear. Testing your bot thoroughly will get you most of the way, but
always make sure that you are catching and logging errors on the programmatic
side. A good debug log will save you many hours of frustration trying to find a
difficult-to-squash bug.

Summary
In this chapter, we saw how to abstract away the core Slack API methods into a
reusable module by using ES6's new class structures. The difference between a
reactive and active bot was outlined as well as the distinction between keywords
and bot commands. By applying the basic knowledge of external APIs outlined in
this chapter, you should be able to create a bot that interfaces with any third-party
application that provides RESTful APIs.

In the next chapter, we will learn about the Redis data storage service and how to
write a bot that interfaces with a persistent data source.

[63]

Using Data
Now that we've seen how to process keywords, commands, and API calls, we will
look at the next logical step in bot building: persistent data storage and retrieval.
References to data can be kept in JavaScript by assigning said data to a variable;
however, its use is limited to when the program is running. If the program is
stopped or restarted, we lose the data. Hence, persistent data storage is required
for certain tasks.

This allows us to build bots that can, for instance, keep track of a leaderboard or
store a to-do list.

In this chapter, we will cover:

•	 Introduction to Redis
•	 Connecting to Redis
•	 Saving and retrieving data
•	 Best practices
•	 Error handling

Introduction to Redis
In the previous chapter, we discovered how to create a competitive roll bot that
allows users to play a "Who can roll the highest" game. Although it worked
admirably, the feature sorely missing is a leaderboard of sorts, where each
user's wins and losses are stored and an overall winners list is kept.

Such a feature wouldn't be difficult to produce; however, the largest problem comes
in storing the data. Any data stored in JavaScript variables would be lost once the
program ends or crashes. A better solution would then be to maintain a persistent
database, which our bot can write to and read from.

Using Data

[64]

There is a wide variety of database services to choose from; you might already be
familiar with MySQL or MongoDB. For the example bots in this chapter, we will
pick a service that is easy to set up and simple to use.

The database service we will use is Redis: http://redis.io/.

The Redis website describes the technology as follows:

"Redis is an open source (BSD licensed), in-memory data structure store, used
as database, cache and message broker. It supports data structures such as
strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs
and geospatial indexes with radius queries. Redis has built-in replication, Lua
scripting, LRU eviction, transactions, and different levels of on-disk persistence,
and provides high availability via Redis Sentinel and automatic partitioning with
Redis Cluster."

A simpler explanation is that Redis is an efficient in-memory key-value store.
Keys can be simple strings, hashes, lists (an ordered collection), sets (unordered
collection of non-repeating values), or sorted sets (ordered or ranked collection of
non-repeating values). Despite the complex official description, setting up and using
Redis is a quick and painless process.

Redis' advantages are its impressive speed, cross-platform communication,
and simplicity.

Getting started with Redis is simple, but we will only be exploring the
tip of the Redis iceberg. For more information on advanced uses of Redis,
visit the Redis website.

There are many Redis client implementations written in a wide variety of languages
(http://redis.io/clients), but we will use a Node-based Redis client.

Bear in mind that Redis is but one solution to the persistent data problem.
Other solutions might include the use of a MySQL relational or a MongoDB
non-relational database.

Installing Redis
To connect to Redis, we will use the Node Redis package. First, we must install
and run our Redis server so Node will have something to connect to. Follow the
instructions for your operating system of choice.

http://redis.io/
http://redis.io/clients

Chapter 4

[65]

Mac OS X
The simplest way to install Redis is through the homebrew package manager.
homebrew makes it easy to install applications and services through the
command line.

If you are unable to use homebrew, visit the Redis quick start guide to install Redis
manually: (http://redis.io/topics/quickstart).

If you are unsure whether you have Homebrew installed, open a terminal and run
the following:

which brew

If nothing returns, run the following in your terminal:

/usr/bin/ruby -e "$(curl –fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

Follow the onscreen prompts until homebrew is successfully installed. To install
Redis, run the following:

brew install redis

Once the installation has completed, you can start a Redis server by using the
following command in your terminal:

redis-server

Windows
Visit the official Microsoft GitHub project for Redis and grab the latest release here:
https://github.com/MSOpenTech/redis/releases. Once unzipped, you can run
redis-server.exe to start the service and redis-cli.exe to connect to the server
through the shell.

Unix
Refer to the Redis quickstart page for instructions on how to install on Linux/Unix
systems: http://redis.io/topics/quickstart.

Once installed, you can start the server with the redis-server command and
connect to the server via redis-cli. These commands function in the exact same
way on OS X.

http://redis.io/topics/quickstart
https://github.com/MSOpenTech/redis/releases
http://redis.io/topics/quickstart

Using Data

[66]

Now that Redis is installed, start the service and you should see something like this:

Redis successfully starting a server

Redis is now up and ready to be used on the default port 6379. Other ports may be
used instead, but the default port is sufficient for our purposes.

Connecting to Redis
To demonstrate how to connect to Redis, we will create a new bot project (including
the Bot class defined in Chapter 3, Adding Complexity). We'll start by installing the
Redis Node client, executing the following:

npm install redis

Now, create a new index.js file and paste in the following code:

'use strict';

const redis = require('redis');
const Bot = require('./Bot');

const client = redis.createClient();

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,

Chapter 4

[67]

 autoMark: true
});

client.on('error', (err) => {
 console.log('Error ' + err);
});

client.on('connect', () => {
 console.log('Connected to Redis!');
});

This snippet will import the Redis client and connect to the local instance running
via the createClient() method. When not supplied with any arguments, the
aforementioned method will assume the service is running locally on the default port
of 6379. If you wish to connect to a different host and port combination, then you can
supply them with following:

let client = redis.createClient(port, host);

For the purposes of this book, we will be using an unsecure Redis server.
Without authentication or other security measures, your data could
be accessed and edited by anyone who connects to your data service.
If you intend to use Redis in a production environment, it is strongly
recommended you read up on Redis security.

Next, ensure that you have the Redis client running in a different terminal window
and start up our bot in the usual way:

SLACK_TOKEN=[your_token_here] node index.js

If all goes well, you should be greeted by this happy message:

Our Node app has successfully connected to the local Redis server

As promised, setting up and connecting to Redis was an easy and quick endeavor.
Next, we will look at actually setting and getting data from our server.

Using Data

[68]

Saving and retrieving data
First, let's look at what the Redis client has to offer us. Add the following lines to
index.js:

client.set('hello', 'Hello World!');

client.get('hello', (err, reply) => {
 if (err) {
 console.log(err);
 return;
 }

 console.log(`Retrieved: ${reply}`);
});

In this example, we will set the value "Hello world!" in Redis with the key hello.
In the get command, we specify the key we wish to use to retrieve a value.

The Node Redis client is entirely asynchronous. This means that you have
to supply a callback function with each command if you wish to process
data.

A common mistake is to use the Node Redis client in a synchronous way.
Here's an example:

let val = client.get('hello');
console.log('val:', val);

This, perhaps confusingly, results in:

val: false

This is because the get function will have returned the Boolean false before the
request to the Redis server has been made.

Run the correct code and you should see the successful retrieval of the
Hello world! data:

Our stored value is successfully retrieved

Chapter 4

[69]

The maximum file size of a Redis string is 512 megabytes. If you
need to store something larger than this, consider using multiple
key/value pairings.

When developing Redis functionality, a good tip is to use the Redis client's built-in
print command for easy debugging and testing:

client.set('hello', 'Hello World!', redis.print);

client.get('hello', redis.print);

This will print the following in the terminal:

Reply: OK

Reply: Hello World!

As we progress through the chapter, we will introduce more useful functions and
methods provided by the Redis client. For a complete list and documentation, visit
https://github.com/NodeRedis/node_redis.

Connecting bots
With our Redis server set up and the basic commands covered, let's apply what
we've learned to a simple bot. In this example, we will code a bot that instructs the
bot to remember a phrase based on a given key value.

Add the following code to your index.js file:

bot.respondTo('store', (message, channel, user) => {
 let msg = getArgs(message.text);

 client.set(user.name, msg, (err) => {
 if (err) {
 channel.send('Oops! I tried to store that but something went
 wrong :(');
 } else {
 channel.send(`Okay ${user.name}, I will remember that for
 you.`);
 }
 });
}, true);

bot.respondTo('retrieve', (message, channel, user) => {
 bot.setTypingIndicator(message.channel);

https://github.com/NodeRedis/node_redis

Using Data

[70]

 client.get(user.name, (err, reply) => {
 if (err) {
 console.log(err);
 return;
 }

 channel.send('Here\'s what I remember: ' + reply);
 });
});

Using the familiar respondTo command introduced in the Bot class of the
previous chapter, we set up our bot to listen for the keyword store and then
set that value in the Redis data store, using the message sender's name as a key.
Let's see this in action:

Our bot remembers what we told it to

Notice how we use the callback function of the set method to ensure that the data
was saved correctly, and informing the user if it was not.

While not terribly impressive behavior, the important thing to realize is that our bot
has successfully stored values in the Redis data store. Redis will store the key value
pairing on the local disk, which means that even if the bot and/or Redis server are
stopped and started again the data will persist.

Dynamic storage
Once again, let's increase the complexity a bit. In the previous example, the key used
to store data is always the command giver's name. In reality, this is impractical as it
means a user could only store one thing at a time, overwriting the value each time
they issued the command. In this next section, we will be augmenting our bot to
allow the user to specify the key of the value to be stored, allowing for the storage
of multiple values.

Chapter 4

[71]

Delete the previous respondsTo commands and paste in the following snippets,
noting the highlighted code:

bot.respondTo('store', (message, channel, user) => {
 let args = getArgs(message.text);

 let key = args.shift();
 let value = args.join(' ');

 client.set(key, value, (err) => {
 if (err) {
 channel.send('Oops! I tried to store something but
 something went wrong :(');
 } else {
 channel.send(`Okay ${user.name}, I will remember that for
 you.`);
 }
 });
}, true);

bot.respondTo('retrieve', (message, channel, user) => {
 bot.setTypingIndicator(message.channel);

 let key = getArgs(message.text).shift();

 client.get(key, (err, reply) => {
 if (err) {
 console.log(err);
 channel.send('Oops! I tried to retrieve something but
 something went wrong :(');
 return;
 }

 channel.send('Here\'s what I remember: ' + reply);
 });
});

In this interpretation, we expect the user to provide a command in the
following format:

store [key] [value]

To extract the key and value from the command, we first use JavaScript's Array.
shift to remove and return the value at index 0 of the args array. Then, it's a simple
case of collecting the rest of the arguments as the value by using Array.join. Now,
we apply what we learned in the previous section to store the user-defined key and
value in the Redis instance.

Using Data

[72]

When the retrieve command is given, we use the same Array.shift technique to
extract the key requested. We will then use it to retrieve the stored data. Let's see it is
in action:

Storing and retrieving multiple entities

Emojis within a message's text are converted into their basic text
components. For instance, the thumbs up emoji is translated to :+1. This
conversion works both ways, which means that Slack will automatically
render any emoji text the bot sends.

Hashes, lists, and sets
So far, we've used a single data type for our keys and values: strings. While keys are
limited to string values, Redis allows for the value to be a variety of different data
types. The different types are as follows:

•	 String
•	 Hash

Chapter 4

[73]

•	 List
•	 Set
•	 Sorted set

We are already familiar with strings, so let's work down the list and explain the
different data types.

Hashes
Hashes are similar to JavaScript objects. However, they differ in that Redis hashes do
not support nested objects. All the property values of a hash will be cast to strings.
Take the following JavaScript object:

let obj = {
 foo: 'bar',
 baz: {
 foobar: 'bazfoo'
 }
};

The baz property contains an object, and we can store the obj object in Redis by
using the hmset function:

client.hmset('obj', obj);

Then, we retrieve the data with hgetall:

client.hgetall('obj', (err, object) => {
 console.log(object);
});

This will log the following line in our terminal:

{ foo: 'bar', baz: '[object Object]' }

Redis has stored the nested baz object by first calling the Object.toString()
function on it, which means that the string value is returned when we perform
our hgetall function.

A workaround is to leverage JavaScript's JSON object to stringify our nested object
before storing and then parsing the object returned from Redis. Observe the
following example:

let obj = {
 foo: 'bar',
 baz: {
 foobar: 'bazfoo'

Using Data

[74]

 }
};

function stringifyNestedObjects(obj) {
 for (let k in obj) {
 if (obj[k] instanceof Object) {
 obj[k] = JSON.stringify(obj[k]);
 }
 }

 return obj;
}

function parseNestedObjects(obj) {
 for (let k in obj) {
 if (typeof obj[k] === 'string' || obj[k] instanceof String) {
 try {
 obj[k] = JSON.parse(obj[k]);
 } catch(e) {
 // string wasn't a stringified object, so fail silently
 }
 }
 }

 return obj;
}

client.hmset('obj', stringifyNestedObjects(obj));

client.hgetall('obj', (err, object) => {
 console.log(parseNestedObjects(object));
});

When executed, we see the logged result:

{ foo: 'bar', baz: { foobar: 'bazfoo' } }

The examples given here only stringify and parse objects nested one
level deep. In order to stringify and parse an object of N depth, look
into the recursion programming technique. A good example can be
found at https://msdn.microsoft.com/en-us/library/
wwbyhkx4(v=vs.94).aspx.

https://msdn.microsoft.com/en-us/library/wwbyhkx4(v=vs.94).aspx
https://msdn.microsoft.com/en-us/library/wwbyhkx4(v=vs.94).aspx

Chapter 4

[75]

Lists
Redis lists are functionally the same as JavaScript arrays. Like with objects, the
value of every index is converted into a string when storing. When dealing with a
multidimensional array (for example, an array containing a subset of arrays) the
toString function will be called before storing in Redis. A simple Array.join(',')
can be used to convert this string value back to an array.

The lpush and rpush commands can be used to store our list:

client.rpush('heroes', ['batman', 'superman', 'spider-man']);

In the preceding snippet, we are pushing our array of heroes to the right of the list.
This works exactly the same as JavaScript's Array.push, where the new values are
appended to the existing array. In this case, it means that previously empty list now
contains our heroes array.

We can push to the left of the array to prepend to the list:

client.lpush('heroes', 'iron-man');

This will result in our list looking like so:

['iron-man', 'batman', 'superman', 'spider-man']

Finally, to access our Redis list we can use the lrange method:

client.lrange('heroes', 0, -1, (err, list) => {
 console.log(list);
});

The second and third arguments provided to lrange are the selection start and end
position. To return all the elements in the list rather than a subset, we can provide -1
as an end position.

Sets
Sets are similar to Redis lists with one very useful difference: sets do not allow
duplicates. Consider the following example:

client.sadd('fruits', ['apples', 'bananas', 'oranges']);
client.sadd('fruits', 'bananas');

client.smembers('fruits', (err, set) => {
 console.log(set);
});

Using Data

[76]

Here, we use the Redis client's sadd to store the set and smembers to retrieve it. In the
second line, we attempt to add the fruit 'bananas' to the 'fruits' list, but since the
value already exists, the sadd call silently fails. The retrieved set is as expected:

['oranges', 'apples', 'bananas']

You might notice that the ordering of the retrieved 'fruits' set is different
from the order that it was stored in. This is because a set is built using
HashTable, which means there are no guarantees to the order of the
elements. If you want to store your elements in a particular order, you
must use a list or a sorted set.

Sorted sets
Functioning as a sort of hybrid between lists and sets, sorted sets have a specific
order and cannot contain duplicates. See the following example:

client.zadd('scores', [3, 'paul', 2, 'caitlin', 1, 'alex']);

client.zrange('scores', 0, -1, (err, set) => {
 console.log(set);
});

client.zrevrange('scores', 0, -1, 'withscores', (err, set) => {
 console.log(set);
});

Using the zadd method, we specify the key for our sorted set and an array of values.
The array indicates the order of the stored set by following this format:

[score, value, score, value ...]

The zrange method uses similar arguments to lrange, we specify the start
and end positions of the set to be returned. This method will return the set in
ascending order:

['alex', 'caitlin', 'paul']

We can reverse this by using zrevrange. Note how we also provide the withscores
string as an argument. This argument will return the scores of each element:

['paul', '3', 'caitlin', '2', 'alex', '1']

Chapter 4

[77]

The withscores argument can be used for all sorted set
retrieval methods.

As you might have realized already, sorted sets especially shine when used to keep
track of game scores or leaderboards. With that in mind, let's revisit our "roll" bot
from Chapter 3, Adding Complexity, and add a leaderboard of winners.

Best practices
Any user should be able to store data in Redis via bot commands; it is however
recommended you ensure that the data storage methods cannot be easily abused.
Accidental abuse might happen in the form of many different Redis calls in a short
amount of time. For more information on Slack channel spam and remedies, revisit
Chapter 2, Your First Bot.

By restricting bot traffic, we can ensure that Redis does not receive an inordinate
amount of write and retrieve actions. If you ever find that Redis latency is not as
good as it should be, visit this webpage to help troubleshoot: http://redis.io/
topics/latency.

Let's now look at how we can improve familiar bot behavior with the addition of
Redis data storage.

First, here is our roll command, with the new Redis store code highlighted:

bot.respondTo('roll', (message, channel, user) => {
 // get the members of the channel
 const members = bot.getMembersByChannel(channel);

 // make sure there actually members to interact with. If there
 // aren't then it usually means that the command was given in a
 // direct message
 if (!members) {
 channel.send('You have to challenge someone in a channel, not
 a direct message!');
 return;
 }

 // get the arguments from the message body
 let args = getArgs(message.text);

http://redis.io/topics/latency
http://redis.io/topics/latency

Using Data

[78]

 // if args is empty, return with a warning
 if (args.length < 1) {
 channel.send('You have to provide the name of the person you
 wish to challenge!');
 return;
 }

 // the user shouldn't challenge themselves
 if (args.indexOf(user.name) > -1) {
 channel.send(`Challenging yourself is probably not the best
 use of your or my time, ${user.name}`);
 return;
 }

 // does the opponent exist in this channel?
 if (members.indexOf(args[0]) < 0) {
 channel.send(`Sorry ${user.name}, but I either can't find
 ${args[0]} in this channel, or they are a bot!`);
 return;
 }

 // Roll two random numbers between 0 and 100
 let firstRoll = Math.round(Math.random() * 100);
 let secondRoll = Math.round(Math.random() * 100);

 let challenger = user.name;
 let opponent = args[0];

 // reroll in the unlikely event that it's a tie
 while (firstRoll === secondRoll) {
 secondRoll = Math.round(Math.random() * 100);
 }

 let winner = firstRoll > secondRoll ? challenger : opponent;

 client.zincrby('rollscores', 1, winner);

 // Using new line characters (\n) to format our response
 channel.send(
 `${challenger} fancies their changes against ${opponent}!\n
 ${challenger} rolls: ${firstRoll}\n
 ${opponent} rolls: ${secondRoll}\n\n
 ${winner} is the winner!`
);

}, true);

Chapter 4

[79]

To store the user's win, we use the Redis client's zincrby method, which will
increment the winner's score by one. Note how we can specify how much to
increment by in the second argument. If the key (the winner's name here) doesn't
exist in the set, it is automatically created with the score 0 and then incremented by
the specified amount.

To retrieve the scoreboard, lets add the following:

bot.respondTo('scoreboard', (message, channel) => {
 client.zrevrange('rollscores', 0, -1, 'withscores', (err, set)
 => {
 if (err) {
 channel.send('Oops, something went wrong! Please try again
 later');
 return;
 }

 let scores = [];

 // format the set into something a bit easier to use
 for (let i = 0; i < set.length; i++) {
 scores.push([set[i], set[i + 1]]);
 i++;
 }

 channel.send('The current scoreboard is:');
 scores.forEach((score, index) => {
 channel.send(`${index + 1}. ${score[0]} with ${score[1]}
 points.`);
 });
 });
}, true);

Once the scoreboard command is given, we immediately look for the reverse
range by using the zrevrange method. This will asynchronously return an array
in the format:

[NAME, SCORE, NAME2, SCORE2, NAME3, SCORE3, …]

Next, we transform that array into a two-dimensional array by splitting the names
and scores into nested arrays, which looks like this:

[[NAME, SCORE], [NAME2, SCORE2], [NAME3, SCORE3], …]

Using Data

[80]

Formatting the data in this way makes it easy for us to send the name and score
to the channel, preceded by the placing on the scoreboard (the index of the array
plus one).

The final result in Slack shows us a working scoreboard:

A scoreboard achieved through persistent data storage

Before moving on to another example, let's look at how to delete a Redis key/value
pairing. Replace your scoreboard command with the following, taking note of the
highlighted code:

bot.respondTo('scoreboard', (message, channel, user) => {
 let args = getArgs(message.text);

 if (args[0] === 'wipe') {

Chapter 4

[81]

 client.del('rollscores');
 channel.send('The scoreboard has been wiped!');
 return;
 }

 client.zrevrange('rollscores', 0, -1, 'withscores', (err, set)
 => {
 if (err) {
 channel.send('Oops, something went wrong! Please try again
 later');
 return;
 }

 if (set.length < 1) {
 channel.send('No scores yet! Challenge each other with the
 \`roll\` command!');
 return;
 }

 let scores = [];

 // format the set into something a bit easier to use
 for (let i = 0; i < set.length; i++) {
 scores.push([set[i], set[i + 1]]);
 i++;
 }

 channel.send('The current scoreboard is:');
 scores.forEach((score, index) => {
 channel.send(`${index + 1}. ${score[0]} with ${score[1]}
 points.`);
 });
 });
}, true);

Now if the command scoreboard wipe is given, we use the Redis client's del
function to wipe the key/value pairing by specifying the key.

Using Data

[82]

We also add in some error handling that sends an error message if there are no
scores at all:

Deleting data should be used with caution

In a real-world example, scoreboards and other sensitive data constructs
should only be deleted by a user with admin rights. Remember that you
can check whether the command issuer is an admin by checking the
user.is_admin property.

Simple to-do example
With the basics of Redis covered, we shall now move on to create a simple to-do
Slack bot. The aim of this bot is to allow users to create a to-do list, allowing them
to add, complete, and delete a task from this list as they go about their day.

This time, we will start with a skeleton of what we want and build each feature step
by step. Start by adding this new command to your bot:

bot.respondTo('todo', (message, channel, user) => {
 let args = getArgs(message.text);

 switch(args[0]) {
 case 'add':

 break;

Chapter 4

[83]

 case 'complete':

 break;

 case 'delete':

 break;

 case 'help':
 channel.send('Create tasks with \`todo add [TASK]\`,
 complete them with \`todo complete [TASK_NUMBER]\` and
 remove them with \`todo delete [TASK_NUMBER]\` or \`todo
 delete all\`');
 break;

 default:
 showTodos(user.name, channel);
 break;
 }
}, true);

function showTodos(name, channel) {
 client.smembers(name, (err, set) => {
 if (err || set.length < 1) {
 channel.send(`You don\'t have any tasks listed yet,
 ${name}!`);
 return;
 }

 channel.send(`${name}'s to-do list:`);

 set.forEach((task, index) => {
 channel.send(`${index + 1}. ${task}`);
 });
 });
}

The bot's behavior will change depending on the second command given after the
initial todo command. In this instance, a switch statement is ideal. We allow for five
options: add, complete, delete, help, and a default option that is triggered when
anything else is passed in.

Using Data

[84]

The help and default behaviors have already been completed, as they are fairly
straightforward. In the latter's case, we retrieve the Redis set, send out an error
if it doesn't exist or has no items and otherwise send the total to-do list.

Display a message if there are no to-dos

Adding a to-do task is simple as well. We are using a Redis set, as we do not want to
allow duplicates in our list. To add an item, we use the previously introduced sadd
command. To make our switch statement less cluttered, all the code will be moved
to a separate function:

case 'add':
 addTask(user.name, args.slice(1).join(' '), channel);
 break;

And the addTask function:

function addTask(name, task, channel) {
 if (task === '') {
 channel.send('Usage: \`todo add [TASK]\`');
 return;
 }

 client.sadd(name, task);
 channel.send('You added a task!');
 showTodos(name, channel);
}

All arguments after the first two (todo add) are joined into a single string and added
to our set with the user's name as our key. Remember, duplicates are not allowed
in a Redis set, so it's safe to store the task without doing any prior checking. We do
check to make sure the task argument is not empty, sending a gentle reminder of
how to use the "add" function if it is.

After the task is set, we display a confirmation and the entire to-do list. This is
behavior that we will implement for every action, as it's a good practice to show
the user what they've done and how it's impacted the data.

Chapter 4

[85]

Here is an example of adding tasks to our to-do list:

Redis' set takes care of the index for us

Next up is the complete command, which takes the number of a task as
an argument:

case 'complete':
 completeTask(user.name, parseInt(args[1], 10), channel);
 break;

Here's the accompanying completeTask function:

function completeTask(name, taskNum, channel) {
 if (Number.isNaN(taskNum)) {
 channel.send('Usage: \`todo complete [TASK_NUMBER]\`');
 return;
 }

 client.smembers(name, (err, set) => {
 if (err || set.length < 1) {
 channel.send(`You don\'t have any tasks listed yet,
 ${user.name}!`);
 return;
 }

 // make sure no task numbers that are out of bounds are given
 if (taskNum > set.length || taskNum <= 0) {
 channel.send('Oops, that task doesn\'t exist!');
 return;
 }

 let task = set[taskNum - 1];

 if (/~/i.test(task)) {
 channel.send('That task has already been completed!');
 return;

Using Data

[86]

 }

 // remove the task from the set
 client.srem(name, task);

 // re-add the task, but with a strikethrough effect
 client.sadd(name, `~${task}~`);

 channel.send('You completed a task!');
 showTodos(name, channel);
 });
}

This action is a little more complicated, as we have to do a little more error handling
to begin with. First, we make sure that the argument provided is a valid number by
using the ES6 Number.isNaN method.

Be careful when using ES5's isNaN method or ES6's Number.isNaN
method, as they can be confusing. These methods answer the question is
the value equal to the type NaN? rather than is the value a number? For more
information, visit https://ponyfoo.com/articles/es6-number-
improvements-in-depth#numberisnan.

After retrieving the set from Redis, we ensure that tasks exist, that the number
provided makes sense (for example, not less than 1 or more than the length of the
set), and that the task hasn't already been completed. The latter is determined by
whether the task has any tilde (~) operators contained within. Messages containing a
tilde as the first and last character will render in strikethrough style within Slack.

To complete a task, we remove the task from the Redis set (using srem) after
assigning it to the task variable, and then add it to Redis again with the
strikethrough style.

Complete a task by referencing its task number

https://ponyfoo.com/articles/es6-number-improvements-in-depth#numberisnan
https://ponyfoo.com/articles/es6-number-improvements-in-depth#numberisnan

Chapter 4

[87]

Finally, let's look at the delete function:

case 'delete':
 removeTaskOrTodoList(user.name, args[1], channel);
 break;

Here's the accompanying function:

function removeTaskOrTodoList(name, target, channel) {
 if (typeof target === 'string' && target === 'all') {
 client.del(name);
 channel.send('To-do list cleared!');
 return;
 }

 let taskNum = parseInt(target, 10);

 if (Number.isNaN(taskNum)) {
 channel.send('Usage: \`todo delete [TASK_NUMBER]\` or \`todo
 delete all\`');
 return;
 }

 // get the set and the exact task
 client.smembers(name, (err, set) => {
 if (err || set.length < 1) {
 channel.send(`You don\'t have any tasks to delete,
 ${name}!`);
 return;
 }

 if (taskNum > set.length || taskNum <= 0) {
 channel.send('Oops, that task doesn\'t exist!');
 return;
 }

 client.srem(name, set[taskNum - 1]);
 channel.send('You deleted a task!');
 showTodos(name, channel);
 });
}

The first thing to note in this function is how we use a type of function overloading
to achieve two different outcomes, depending on the arguments passed in.

Because JavaScript is a loosely typed language, we can perform actions depending
on whether the target argument is a string or a number. In the case of a string (and
provided that that string equals all), we delete the entire set from Redis using the del
command, clearing the whole to-do list.

Using Data

[88]

In case of a number, we only delete the task specified, provided that the target is a
valid number we can use (for example, not smaller than 1 and not greater than the
length of the set).

Here's the multiple functionality of the delete command in action:

List the to-dos, delete a task, add another, and then delete the whole list

Summary
In this chapter, the reader has learned the basics of the persistent data storage Redis
and how to use it through the Node Redis client. We outlined the reasons why Redis
lends itself well for use with bots, particularly when keeping a score list or storing
multiple small items.

In the next chapter, we will introduce the concept of natural language processing
(NLP) and see how to evaluate and generate natural language for use in a bot.

[89]

Understanding and
Responding to Natural

Language
We've built bots that can play games, store data, and provide useful information.
The next step isn't information gathering, it's processing. This chapter will introduce
natural language processing (NLP) and show how we can use it to enhance our bots
even further.

In this chapter, we will cover:

•	 A brief introduction to natural language
•	 A Node implementation
•	 Natural language processing
•	 Natural language generation
•	 Displaying data in a natural way

A brief introduction to natural language
You should always strive to make your bot as helpful as possible. In all the bots
we've made so far, we've awaited clear instructions via a key word from the user and
then followed said instructions as far as the bot is capable. What if we could infer
instructions from users without them actually providing a key word? Enter natural
language processing (NLP).

Understanding and Responding to Natural Language

[90]

NLP can be described as a field of computer science that strives to understand
communication and interactions between computers and human (natural) languages.

In layman's terms, NLP is the process of a computer interpreting conversational
language and responding by executing a command or replying to the user in an
equally conversational tone.

Examples of NLP projects are digital assistants such as the iPhone's Siri. Users can
ask questions or give commands and receive answers or confirmation in natural
language, seemingly from a human.

One of the more famous projects using NLP is IBM's Watson system. In 2011,
Watson famously competed against human opponents in the TV show Jeopardy!
and won first place.

The NLP field is a large and complicated one, with many years of research
performed by prestigious academic institutions and by large technology companies.
Watson alone took 5 years, $3 million, and a small army of academics and engineers
to build. In this chapter, the main concepts will briefly be described and a practical
example given.

First, let's take a step back and see how NLP might benefit our bots. If we built a bot
that retrieves the weather report, we could imagine the command to look something
like this:

weather amsterdam tomorrow

This would return tomorrow's weather report for the city of Amsterdam. What if the
bot could retrieve the weather report without requiring a command to be issued?
For instance, if a Slack user were to send the message "Will it rain tomorrow?", then
the bot would respond with tomorrow's weather report. This is NLP at work; it is
the breakdown of natural language into instructions that can be interpreted by the
program as a command.

To help us in our understanding of NLP, we will be using a helper library that
abstracts the more complicated algorithms away. A good NLP framework is
the Python language-based natural language toolkit (NLTK) available at
http://www.nltk.org/.

Luckily for us, a project to port the major functions of NLTK to Node has been
functioning for some time and has reached a high enough level of maturity for
us to use it seamlessly with our existing JavaScript projects. Known as Natural
(https://github.com/NaturalNode/natural), this library will be our key
point of entry to the world of NLP.

http://www.nltk.org/
https://github.com/NaturalNode/natural

Chapter 5

[91]

Let's start by introducing some of the more common NLP algorithms. Afterwards,
we'll use our newfound knowledge by building a simple weather bot, as outlined
earlier.

Fundamentals of NLP
NLP, at its core, works by splitting a chunk of text (also referred to as a corpus)
into individual segments or tokens and then analyzing them. These tokens might
simply be individual words but might also be word contractions. Let's look at how
a computer might interpret the phrase: I have watered the plants.

If we were to split this corpus into tokens, it would probably look something
like this:

['I', 'have', 'watered', 'the', 'plants']

The word the in our corpus is unnecessary as it does not help to understand the
phrase's intent— the same for the word have. We should therefore remove the
surplus words:

['I', 'watered', 'plants']

Already, this is starting to look more usable. We have a personal pronoun in the
form of an actor (I), an action or verb (watered), and a recipient or noun (plants).
From this, we can deduce exactly which action is enacted to what and by whom.
Furthermore, by conjugating the verb watered, we can establish that this action
occurred in the past. Consider how the context and meaning of the phrase changes
when we make minor changes: We are watering the plant.

By using the same process as previously, we get the following:

['We', 'watering', 'plant']

The meaning of the phrase has dramatically changed: there are multiple actors
involved, the action is in the present and the recipient is singular. The challenge of
NLP is the ability to analyze such nuances, arrive at a conclusion with a high enough
confidence level, and then perform actions based on that conclusion.

A computer, much like a person, learns this nuance by practice and by picking up
patterns. A common NLP term is to train your system to recognize context in a
corpus. By providing a large amount of predefined phrases to our system, we can
analyze said phrases and look for similar ones in other corpus'. We will talk more
about how to use this training or classifying technique later.

Understanding and Responding to Natural Language

[92]

Let's now look at how we can actually perform the actions explained in the
beginning of this section, starting with the splitting of a corpus into a series
of tokens, also known as tokenizing.

Tokenizers
Start by creating a new project with npm init. Name your bot "weatherbot"
(or something similar), and install the Slack and Natural APIs with the
following command:

npm install @slack/client natural –save

Copy our Bot class from the previous chapters and enter the following in index.js:

'use strict';

// import the natural library
const natural = require('natural');

const Bot = require('./Bot');

// initalize the tokenizer
const tokenizer = new natural.WordTokenizer();

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

// respond to any message that comes through
bot.respondTo('', (message, channel, user) => {

 let tokenizedMessage = tokenizer.tokenize(message.text);

 bot.send(`Tokenized message: ${JSON.stringify(tokenizedMessage)}`,
channel);
});

Chapter 5

[93]

Start up your Node process and type a test phrase into Slack:

The returned tokenized message

Through the use of tokenization, the bot has split the given phrase into short
fragments or tokens, ignoring punctuation and special characters. Note that we are
using the native JSON object's stringify method to convert the JavaScript array into
a string before sending it to the channel.

This particular tokenized algorithm will handle contractions (for example, hasn't)
by removing the punctuation and splitting the word. Depending on our use case, we
might want to use a different algorithm. Luckily, natural provides three different
algorithms. Each algorithm returns slightly different results for a corpus. To learn
more about these algorithms, visit the natural GitHub page: https://github.com/
NaturalNode/natural#tokenizers.

A majority of these algorithms use punctuation (spaces, apostrophes, and so on)
to tokenize phrases, whereas the Treebank algorithm analyses contractions (for
example, wanna and gimme) to split them into regular words (want to and give me
in the case of wanna and gimme). Let's use Treebank for the next example, and replace
the line where the tokenizer is initialized with the following:

const tokenizer = new natural.TreebankWordTokenizer();

Now, return to Slack and try another test message:

The Treebank algorithm handles contractions differently

https://github.com/NaturalNode/natural#tokenizers
https://github.com/NaturalNode/natural#tokenizers

Understanding and Responding to Natural Language

[94]

Notice two important things here: the haven't contraction was split into two parts,
the root verb (have) and the contracted add-on (not). Furthermore, the word cannot
was split into two separate words, making the command easier to deal with. This
also makes certain slang words like lemme and gotta easier to process. By splitting
the contracted word into two, we can more easily infer whether the phrase is positive
or negative. Can by itself means positive; however, if it is followed by
not it changes the context of the phrase to be negative.

Stemmers
Sometimes, it is useful to find the root or stem of a word. In the English language,
irregular verb conjugations are not uncommon. By deducing the root of a verb, we
can dramatically decrease the amount of calculations needed to find the action of
the phrase. Take the verb searching for example; for the purpose of bots, it would
be much easier to process the verb in its root form search. Here, a stemmer can
help us determine said root. Replace the contents of index.js with the following to
demonstrate stemmers:

'use strict';

// import the natural library
const natural = require('natural');

const Bot = require('./Bot');

// initialize the stemmer
const stemmer = natural.PorterStemmer;

// attach the stemmer to the prototype of String, enabling
// us to use it as a native String function
stemmer.attach();

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

// respond to any message that comes through
bot.respondTo('', (message, channel, user) => {
 let stemmedMessage = stemmer.stem(message.text);

 bot.send(`Stemmed message: ${JSON.stringify(stemmedMessage)}`,
 channel);
});

Chapter 5

[95]

Now, let's see what stemming a word returns:

The conjugated versions of a verb are often different from its root

As expected, searching is stemmed into search but (more interestingly) the token
shining is stemmed into shine. This shows that the process of stemming is more
than simply removing -ing from the tail end of a token. Now, we can analyze our
tokenized and stemmed corpus and pick out certain verbs or actions. For instance,
after stemming, the phrases I went swimming and I swam, both contain the verb swim,
which means we only have to search for one term (swim) rather than two (swimming
and swam).

Stemming also works for removing plurals from words. For instance, searches
stems into search and rains into rain.

Let's combine the concepts of tokenizing and stemming into one program to see its
effects. Once again, replace index.js with the following:

'use strict';

// import the natural library
const natural = require('natural');

const Bot = require('./Bot');

// initialize the stemmer
const stemmer = natural.PorterStemmer;

// attach the stemmer to the prototype of String, enabling

Understanding and Responding to Natural Language

[96]

// us to use it as a native String function
stemmer.attach();

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

// respond to any message that comes through
bot.respondTo('', (message, channel, user) => {
 let stemmedMessage = message.text.tokenizeAndStem();

 bot.send(`Tokenize and stemmed message:
 ${JSON.stringify(stemmedMessage)}`, channel);
});

Note that we call tokenizeAndStem on message.text. This might seem odd, until
you realize that we have attached the tokenizeAndStem method to the String
object's prototype in earlier code, highlighted in the preceding code.

Switch over to the Slack client and you should see:

Tokenizing and stemming to produce useful results

The tokenizer and stemming combination has automatically left out very common
words such as it and in, leaving us with a sentence distilled into the most important
tokens of the original input.

Using just the tokenized and stemmed result, we can infer that the user wishes to
know about the weather in Amsterdam. Furthermore, we can choose to exclude the
word is from our results. This leaves us with rain amsterdam, which is enough
information for us to make a weather API call.

Chapter 5

[97]

String distance
A string distance measuring algorithm is a calculation of how similar two strings
are to one another. The strings smell and bell can be defined as similar, as they
share three characters. The strings bell and fell are even closer, as they share three
characters and are only one character apart from one another. When calculating
string distance, the string fell will receive a higher ranking than smell when the
distance is measured between them and bell.

The NPM package natural provides three different algorithms for string distance
calculation: Jaro-Winkler, the Dice coefficient, and the Levenshtein distance. Their
main differences can be described as follows:

•	 Dice coefficient: This calculates the difference between strings and
represents the difference as a value between zero and one. Zero being
completely different and one meaning identical.

•	 Jaro-Winkler: This is similar to the Dice Coefficient, but gives greater
weighting to similarities at the beginning of the string.

•	 Levenshtein distance: This calculates the amount of edits or steps required to
transform one string into another. Zero steps means the strings are identical.

Let's use the Levenshtein distance algorithm to demonstrate its use:

let distance = natural.LevenshteinDistance('weather', 'heater');

console.log('Distance:', distance); // distance of 10

let distance2 = natural.LevenshteinDistance('weather', 'weather');

console.log('Distance2:', distance2); // distance of 0

A popular use for string distances is to perform a fuzzy search, where the search
returns values that are a low string distance from the requested query. String
distance calculation can be particularly useful for bots when processing a command
with a typo in it. For instance, if a user meant to request the weather report for
Amsterdam by sending the command weather amsterdam, but instead typed
weater amsterdam. By calculating the Levenshtein distance between the strings, we
can make an educated guess as to the user's intent. Check out the following snippet:

bot.respondTo('', (message, channel, user) => {
 // grab the command from the message's text
 let command = message.text.split(' ')[0];

Understanding and Responding to Natural Language

[98]

 let distance = natural.LevenshteinDistance('weather', command);

 // our typo tolerance, a higher number means a larger
 // string distance
 let tolerance = 2;

 // if the distance between the given command and 'weather' is
 // only 2 string distance, then that's considered close enough
 if (distance <= tolerance) {
 bot.send(`Looks like you were trying to get the weather,
 ${user.name}!`, channel);
 }}, true);

Here's the result in Slack:

Calculating string distance can make your bot a lot more user friendly

We set our tolerance to be quite low in this case, allowing for two mistakes or steps
to indicate a hit. In production code, it would make sense to reduce the tolerance to
only one step.

Chapter 5

[99]

Be careful when choosing which string similarity algorithm to use, as
each might determine distance differently. For instance, when using the
Jaro-Winkler and Dice Coefficient algorithms, a score of 1 indicates that
the two strings are identical. With the Levenshtein difference, it is the
opposite, where 0 means identical and the higher the number the larger
the string distance.

Inflection
An inflector can be used to convert a noun back and forth from its singular and
plural forms. This is useful when generating natural language, as the plural versions
of nouns might not be obvious:

let inflector = new natural.NounInflector();

console.log(inflector.pluralize('virus'));
console.log(inflector.singularize('octopi'));

The preceding code will output viri and octopus, respectively.

Inflectors may also be used to transform numbers into their ordinal forms;
for example, 1 becomes 1st, 2 becomes 2nd, and so on:

let inflector = natural.CountInflector;

console.log(inflector.nth(25));
console.log(inflector.nth(42));
console.log(inflector.nth(111));

This outputs 25th, 42nd, and 111th, respectively.

Here's an example of the inflector used in a simple bot command:

let inflector = natural.CountInflector;

bot.respondTo('what day is it', (message, channel) => {
 let date = new Date();

 // use the ECMAScript Internationalization API to convert
 // month numbers into names
 let locale = 'en-us';
 let month = date.toLocaleString(locale, { month: 'long' });
 bot.send(`It is the ${inflector.nth(date.getDate())} of
 ${month}.`, channel);
}, true);

Understanding and Responding to Natural Language

[100]

Now when asked what day it is, our bot can respond a little more naturally:

Inflection can make your bot more personable

This leads us to our next topic: how to display data in an easy-to-understand way.

Displaying data in a natural way
Let's build our bot's weather functionality. To do this, we will be using a third-party
API called Open Weather Map. The API is free to use for up to 60 calls per minute,
with further pricing options available. To obtain the API key, you will need to sign
up here: https://home.openweathermap.org/users/sign_up.

Remember that you can pass variables such as API keys into Node from
the command line. To run the weather bot, you could use the following
command:
SLACK_TOKEN=[YOUR_SLACK_TOKEN] WEATHER_API_KEY=[YOUR_
WEATHER_KEY] nodemon index.js

Once you signed up and obtained your API key, copy and paste the following code
into index.js, replacing process.env.WEATHER_API_KEY with your newly acquired
Open Weather Map key:

'use strict';

// import the natural library
const natural = require('natural');

const request = require('superagent');

const Bot = require('./Bot');

const weatherURL =
`http://api.openweathermap.org/data/2.5/weather?&units=metric&appi
d=${process.env.WEATHER_API_KEY}&q=`;

https://home.openweathermap.org/users/sign_up

Chapter 5

[101]

// initialize the stemmer
const stemmer = natural.PorterStemmer;

// attach the stemmer to the prototype of String, enabling
// us to use it as a native String function
stemmer.attach();

const bot = new Bot({
 token: process.env.SLACK_TOKEN,
 autoReconnect: true,
 autoMark: true
});

bot.respondTo('weather', (message, channel, user) => {
 let args = getArgs(message.text);

 let city = args.join(' ');

 getWeather(city, (error, fullName, description, temperature) => {
 if (error) {
 bot.send(error.message, channel);
 return;
 }

 bot.send(`The weather for ${fullName} is ${description} with a
 temperature of ${Math.round(temperature)} celsius.`, channel);
 });
}, true);

function getWeather(location, callback) {
 // make an AJAX GET call to the Open Weather Map API
 request.get(weatherURL + location)
 .end((err, res) => {
 if (err) throw err;
 let data = JSON.parse(res.text);

 if (data.cod === '404') {
 return callback(new Error('Sorry, I can\'t find that
 location!'));
 }

 console.log(data);

 let weather = [];

Understanding and Responding to Natural Language

[102]

 data.weather.forEach((feature) => {
 weather.push(feature.description);
 });

 let description = weather.join(' and ');

 callback(data.name, description, data.main.temp);
 });
}

// Take the message text and return the arguments
function getArgs(msg) {
 return msg.split(' ').slice(1);
}

Using familiar code, our bot performs the following tasks:

•	 Initializes the stemmer from the natural package and attaches it to the
string prototype

•	 Awaits the weather command and uses the getWeather function to retrieve
the Open Weather Map weather data via an Asynchronous JavaScript and
XML (AJAX) call

•	 Sends a formatted weather message to the channel

Here's the bot in action:

A simple weatherbot

After receiving the command and the place name, the bot sends an AJAX request to
Open Weather Map with the place name as the argument. In return, we get a JSON
response that looks like this:

{
 coord: { lon: 4.89, lat: 52.37 },
 weather:
 [{ id: 310,
 main: 'Drizzle',
 description: 'light intensity drizzle rain',
 icon: '09n' }],
 base: 'cmc stations',

Chapter 5

[103]

 main: { temp: 7, pressure: 1021, humidity: 93, temp_min: 7,
 temp_max: 7 },
 wind: { speed: 5.1, deg: 340 },
 clouds: { all: 75 },
 dt: 1458500100,
 sys:
 { type: 1,
 id: 5204,
 message: 0.0103,
 country: 'NL',
 sunrise: 1458452421,
 sunset: 1458496543 },
 id: 2759794,
 name: 'Amsterdam',
 cod: 200
}

Note how among the plethora of information we get back there is the full,
capitalized name of the place and useful information such as minimum and
maximum temperature. For our bot's initial purpose, we will use the temperature
object (main), the name property, and the description inside the weather object.

Now that we have a simple bot which responds to the command weather, let's see if
we can use NLP to get more specific answers.

Notice how the Open Weather Map AJAX call was abstracted out into the
getWeather function. This means we can use the same function for both command
calls and NLP calls.

Before we continue, we should discuss the right use case for NLP techniques.

When to use NLP?
It might be tempting to have weatherbot listen to and process all messages sent in
the channel. This immediately poses some problems:

•	 How do we know if the message sent is a query on the weather or is
completely unrelated?

•	 Which geographic location is the query about?
•	 Is the message a question or a statement? For example, the difference

between Is it cold in Amsterdam and It is cold in Amsterdam.

Understanding and Responding to Natural Language

[104]

Although an NLP-powered solution to the preceding questions could probably
be found, we have to face facts: it's likely that our bot will get at least one of the
above points wrong when listening to generic messages. This will lead the bot to
either provide bad information or provide unwanted information, thus becoming
annoying. If there's one thing we need to avoid at all costs, it's a bot that sends too
many wrong messages too often.

Here's an example of a bot using NLP and completely missing the point of the
message sent:

A clearly misunderstood message

If a bot were to often mistake your unrelated messages for actual commands, you can
imagine users disabling your bot very quickly after enabling it.

The best possible solution would be to create a bot that has human-level natural
language processing. If that sentence doesn't concern you, then consider that
human-level natural language processing is considered an AI-complete problem.
Essentially, it is equivalent to attempting to solve the problem of making computers
as intelligent as humans.

Instead, we should focus on how to make our bot perform as best as possible with
the resources at hand. We can start by introducing a new rule: use NLP as an
enhancement for your bot, not as a main feature.

An example of this is to only use NLP techniques when the bot is directly addressed
in a mention. A mention in a Slack channel is when a user sends a message directly
to another user in a public channel. This is done by prefacing the user's name with
the @ symbol. Bots can also be mentioned, which means we should be able to process
the weather command in two ways:

•	 The user prefaces their request with the command weather: weather is it
raining in Amsterdam

•	 The user uses a mention @weatherbot is it raining in Amsterdam

Chapter 5

[105]

Mentions
To implement the second point, we need to revisit our Bot class and add mention
functionality. In the Bot class' constructor, replace the RTM_CONNECTION_OPENED
event listener block with the following:

this.slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 let user = this.slack.dataStore.
 getUserById(this.slack.activeUserId)
 let team = this.slack.dataStore.
 getTeamById(this.slack.activeTeamId);

 this.name = user.name;
 this.id = user.id;

 console.log(`Connected to ${team.name} as ${user.name}`);
});

The only change here is the addition of the bot's id to the this object. This will help
us later. Now, replace the respondTo function with this:

respondTo(opts, callback, start) {
 if (!this.id) {
 // if this.id doesn't exist, wait for slack to connect
 // before continuing
 this.slack.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, () => {
 createRegex(this.id, this.keywords);
 });
 } else {
 createRegex(this.id, this.keywords);
 }

 function createRegex(id, keywords) {
 // if opts is an object, treat it as options
 // otherwise treat it as the keywords string
 if (opts === Object(opts)) {
 opts = {
 mention: opts.mention || false,
 keywords: opts.keywords || '',
 start: start || false
 };
 } else {
 opts = {

Understanding and Responding to Natural Language

[106]

 mention: false,
 keywords: opts,
 start: start || false
 };
 }

 // mention takes priority over start variable
 if (opts.mention) {
 // if 'mention' is truthy, make sure the bot only
 // responds to mentions of the bot
 opts.keywords = `<@${id}>:* ${opts.keywords}`;
 } else {
 // If 'start' is truthy, prepend the '^' anchor to instruct
 // the expression to look for matches at the beginning of
 // the string
 opts.keywords = start ? '^' + opts.keywords : opts.keywords;
 }

 // Create a new regular expression, setting the case
 // insensitive (i) flag
 // Note: avoid using the global (g) flag
 let regex = new RegExp(opts.keywords, 'i');

 // Set the regular expression to be the key, with the callback
 // function as the value
 keywords.set(regex, callback);
 }
}

We've improved the respondTo function by first checking whether this.id exists.
If not, it means that we've not yet successfully connected to Slack. Therefore, we
wait till Slack has connected (remember how we set this.id in the constructor
after connecting) and then proceed. This is the second time we listen for the
RTM_CONNECTION_OPENED event. Luckily, the first time it happens in the Bot class'
constructor, which means this listener will always trigger second as it was added
later. This ensures that this.id is defined once the event triggers.

The function now takes either a string (the keywords we're looking for) or an
object as its first parameter. In the case of an object, we check to see whether the
mention property is truthy; if so, we create a regular expression that purposefully
looks for the mention syntax. When a message is received, a mention takes the
following structure:

<@[USER_ID]>: [REST OF MESSAGE]

Chapter 5

[107]

Switch back to index.js and let's try out our new code by replacing the previous
respondTo block of weather:

bot.respondTo({ mention: true }, (message, channel, user) => {
 let args = getArgs(message.text);

 let city = args.join(' ');

 getWeather(city, (error, fullName, description, temperature) =>
 {
 if (error) {
 bot.send(error.message, channel);
 return;
 }

 bot.send(`The weather for ${fullName} is ${description} with a
 temperature of ${Math.round(temperature)} celsius.`, channel);
 });
});

Now when we mention our bot and pass a city name, we get the following result:

Mentions can be used to identify specific behavior

Mentions are a great way to ensure that the message sent is meant to be a
command for your bot. When implementing a natural language solution,
it is highly recommended you use mentions.

Now with mentions in place, let's look at how we're going to answer weather-related
questions in an NLP way. We briefly talked about classification and the training
of NLP systems earlier. Let's revisit that topic and see how we can use it for our
weather bot.

Understanding and Responding to Natural Language

[108]

Classifiers
Classification is the process of training your bot to recognize a phrase or pattern of
words and to associate them with an identifier. To do this, we use a classification
system built into natural. Let's start with a small example:

const classifier = new natural.BayesClassifier();

classifier.addDocument('is it hot', ['temperature',
'question','hot']);
classifier.addDocument('is it cold', ['temperature', 'question'
'cold']);
classifier.addDocument('will it rain today', ['conditions',
'question', 'rain']);
classifier.addDocument('is it drizzling', ['conditions',
'question', 'rain']);

classifier.train();

console.log(classifier.classify('will it drizzle today'));
console.log(classifier.classify('will it be cold out'));

The first log prints:

conditions,question,rain

The second log prints:

temperature,question,cold

The classifier stems the string to be classified first, and then calculates which of the
trained phrases it is the most similar to by assigning a weighting to each possibility.

You can view the weightings by using the following code:

console.log(classifier.getClassifications('will it drizzle
today'));

The output is as follows:

[{ label: 'conditions,question,rain',
 value: 0.17777777777777773 },
 { label: 'temperature,question,hot', value: 0.05 },
 { label: 'temperature,question,cold', value: 0.05 }]

Chapter 5

[109]

To get accurate and reliable results, you must train your bot with potentially
hundreds of phrases. Luckily, you can also import training data JSON files
into the classifier.

Save your classifier training data by creating a classifier.json file in
your directory:

classifier.save('classifier.json', (err, classifier) => {
 // the classifier is saved to the classifier.json file!
});

Retrieve the same file with the following code:

natural.BayesClassifier.load('classifier.json', null, (err,
classifier) => {
 if (err) {
 throw err;
 }

 console.log(classifier.classify('will it drizzle today'));
});

Now let's try and use classifiers to power our weatherbot.

Using trained classifiers
An example classifier.json file that contains training data for weather is
included with this book. For the rest of this chapter, we will assume that the
file is present and that we are loading it in via the preceding method.

Replace your respondTo method call with the following snippet:

let settings = {};

bot.respondTo({ mention: true }, (message, channel, user) => {
 let args = getArgs(message.text);

 if (args[0] === 'set') {
 let place = args.slice(1).join(' ');
 settings[user.name] = place

 bot.send(`Okay ${user.name}, I've set ${place} as your default
 location`, channel);
 return;
 }

Understanding and Responding to Natural Language

[110]

 if (args.indexOf('in') < 0 && !settings[user.name]) {
 bot.send(`Looks like you didn\'t specify a place name, you can
 set a city by sending \`@weatherbot set [city name]\` or by
 sending \`@weatherbot ${args.join(' ')} in [city name]\``,
 channel);
 return;
 }

 // The city is usually preceded by the word 'in'
 let city = args.indexOf('in') > 0 ?
 args.slice(args.indexOf('in') + 1) : settings[user.name];

 let option = classifier.classify(message.text).split(',');

 console.log(option);

 // Set the typing indicator as we're doing an asynchronous
 request
 bot.setTypingIndicator(channel);

 getWeather(city, (error, fullName, description, temperature) =>
 {
 if (error) {
 bot.send(`Oops, an error occurred, please try again later!`,
 channel);
 return;
 }

 let response = '';

 switch(option[0]) {
 case 'weather':
 response = `It is currently ${description} with a
 temperature of ${Math.round(temperature)} celsius in
 ${fullName}.`;
 break;

 case 'conditions':
 response = `${fullName} is experiencing ${description}
 right now.`;
 break;

 case 'temperature':
 let temp = Math.round(temperature);

Chapter 5

[111]

 let flavorText = temp > 25 ? 'hot!' : (temp < 10 ? 'cold!'
 : 'nice!');

 response = `It's currently ${temp} degrees celsius in
 ${fullName}, that's ${flavorText}`;
 }

 bot.send(response, channel);
 });
});

Run the Node process and ask weatherbot a series of natural language questions:

Weatherbot can now understand conversational language

Let's look at the code and see what's going on:

let settings = {};

bot.respondTo({ mention: true }, (message, channel, user) => {
 let args = getArgs(message.text);

 if (args[0] === 'set') {
 let place = args.slice(1).join(' ');
 settings[user.name] = place

Understanding and Responding to Natural Language

[112]

 bot.send(`Okay ${user.name}, I've set ${place} as your default
 location`, channel);
 return;
 }

First, we check to see whether the keyword set is used immediately after the
@weatherbot mention. If yes, this sets the following arguments to be the default
city of the user. We use a simple settings object here, but this could be improved by
using a data store such as Redis, explained in Chapter 4, Using Data.

You can see an example of the set behavior in the following screenshot:

Setting a city saves users from having to type in their place name for each query

Next, we attempt to find the place we want to get weather information for:

if (args.indexOf('in') < 0 && !settings[user.name]) {
 bot.send(`Looks like you didn\'t specify a place name, you can
 set a city by sending \`@weatherbot set [city name]\` or by
 sending \`@weatherbot ${args.join(' ')} in [city name]\``,
 channel);
 return;
 }

 // The city is usually preceded by the word 'in'
 let city = args.indexOf('in') > 0 ?
 args.slice(args.indexOf('in') + 1) : settings[user.name];

We expect all weather queries with a place name to follow the pattern [condition]
in [place name]. This means we can make a reasonable assumption that all tokens
after the word in are the place name to use in our AJAX call.

If the word in does not appear and there is no set place name, then we send back an
error message with a best guess example of how to use weatherbot.

Chapter 5

[113]

This is, of course, not the most ideal way to detect a place name—determining
which part of the phrase is a place name is notoriously difficult, especially when
the name in question comprises multiple words like New York or Dar es Salaam.
One possible solution would be to train our bot with a series of city name classifiers
(essentially one training phrase per city). Other solutions include the Query
GeoParser http://www2009.eprints.org/239/ and the Stanford Named Entity
Recognizer http://nlp.stanford.edu/software/CRF-NER.shtml.

Next we use the classifier to identify which key words the message should be
associated with:

let option = classifier.classify(message.text).split(',');

 console.log(option);

 // Set the typing indicator as we're doing an
 // asynchronous request
 bot.setTypingIndicator(channel);

Some of the classifier's phrases are added with an array as the second argument,
for example:

classifier.addDocument('is it hot outside', ['temperature',
'question', 'hot']);

This means that the returned value from the classifier.classify method is a
comma-separated string value. We transform it into a JavaScript array by using the
Array.split method.

Finally, we set the typing indicator, which is good practice when making an
asynchronous call:

getWeather(city, (error, fullName, description, temperature) => {
 if (error) {
 bot.send(`Oops, an error occurred, please try again later!`,
 channel);
 return;
 }

 let response = '';

 switch(option[0]) {
 case 'weather':
 response = `It is currently ${description} with a
 temperature of ${Math.round(temperature)} celsius in
 ${fullName}.`;

http://www2009.eprints.org/239/
http://nlp.stanford.edu/software/CRF-NER.shtml

Understanding and Responding to Natural Language

[114]

 break;

 case 'conditions':
 response = `${fullName} is experiencing ${description}
 right now.`;
 break;

 case 'temperature':
 let temp = Math.round(temperature);
 let flavorText = temp > 25 ? 'hot!' : (temp < 10 ? 'cold!'
 : 'nice!');

 response = `It's currently ${temp} degrees celsius in
 ${fullName}, that's ${flavorText}`;
 }

 bot.send(response, channel);
 });
});

The value at index 0 of the option object is the state of the question, in this case
whether the message is related to the temperature, condition, or generic weather.

Our options are as follows:

•	 Temperature: Send the temperature (in Celsius) to the channel
•	 Conditions: Send the weather conditions (for example, raining and windy)

to the channel
•	 Weather: Send both the conditions and temperature to the channel

It is important to understand the underlying concepts of classification and training
to build a smarter bot. It is, however, possible to abstract the problem of obtaining
training data by using the third-party service wit.ai (https://wit.ai/). wit.ai is a
free service, created by Facebook, which allows you to train phrases (referred to as
entities by wit.ai) and to retrieve analysis on a given phrase easily and quickly via
an AJAX request.

Alternatively, you could use services such as api.ai (https://api.ai/) or
Microsoft's LUIS (https://www.luis.ai/). Bear in mind, however, that although
these services are free and easy to use, it is not guaranteed that they will be free
or even around in the future. Unless you are attempting to build something that
requires extremely accurate NLP services, it is almost always better to create your
own implementation with open source NLP libraries. This has the added benefit of
controlling and owning your own data, something which is not guaranteed when
using a third-party service.

https://wit.ai/
https://api.ai/
https://www.luis.ai/

Chapter 5

[115]

Now that we know how to process language, we should take a look at how to
transform our data into human understandable natural language.

Natural language generation
Natural language can be defined as a conversational tone in a bot's response.
The purpose here is not to hide the fact that the bot is not human, but to make
the information easier to digest.

The flavorText variable from the previous snippet is an attempt to make the bot's
responses sound more natural; in addition, it is a useful technique to cheat our
way out of performing more complex processing to reach a conversational tone
in our response.

Take the following example:

Weatherbot's politician-like response

Notice how the first weather query is asking whether it's cold or not. Weatherbot
gets around giving a yes or no answer by making a generic statement on the
temperature to every question.

This might seem like a cheat, but it is important to remember a very important aspect
of NLP. The more complex the generated language, the more likely it is to go wrong. Generic
answers are better than outright wrong answers.

Understanding and Responding to Natural Language

[116]

This particular problem could be solved by adding more keywords to our classifiers
and adding more phrases. Currently, our classifier.json file contains 50 phrases
related to the weather; adding more phrases could get us a clearer idea of what is
being asked of weatherbot.

This leads us to a very important point in the pursuit of natural language generation.

When should we use natural language
generation?
Sparingly, is the answer. Consider Slackbot, Slack's own in-house bot used for
setting up new users, amongst other things. Here's the first thing Slackbot says
to a new user:

The humble bot

Immediately, the bot's restrictions are outlined and no attempts to hide the fact
that it is not human are made. Natural language generation is at its best when
used to transform data-intensive constructs such as JSON objects into easy to
comprehend phrases.

The Turing Test is a famous test developed in 1950 by Alan Turing to assess a
machine's ability to make itself indistinguishable from a human in a text-only sense.
Like Slackbot, you should not strive to make your bot Turing Test complete. Instead,
focus on how your bot can be the most useful and use natural language generation to
make your bot as easy to use as possible.

The uncanny valley
The uncanny valley is a term used to describe systems that act and sound like
humans, but are somehow slightly off. This slight discrepancy actually leads to the
bot feeling a lot more unnatural, and this is the exact opposite of what we are trying
to accomplish with natural language generation. Instead, we should avoid trying
to make the bot perfect in its natural language responses; the chances of finding
ourselves in the uncanny valley get higher the more human-like we try to make
a bot sound.

Chapter 5

[117]

Instead, we should focus on making our bots useful and easy to use, over making
its responses natural. A good principle to follow is to build your bot to be as smart
as a puppy, a concept championed by Matt Jones (http://berglondon.com/
blog/2010/09/04/b-a-s-a-a-p/):

"Making smart things that don't try to be too smart and fail, and indeed, by
design, make endearing failures in their attempts to learn and improve. Like
puppies."

Let's expand our weatherbot to make the generated response sound a little more
natural (but not too natural).

First, edit the getWeather function to include data as a final argument in its
callback call:

callback(null, data.name, condition, data.main.temp, data);

Then add the data variable to the callback we assign in the mention respondsTo:

getWeather(city, (error, fullName, description, temperature, data)
=> {

In the switch statement within the getWeather call, replace the weather case
with this:

case 'weather':
 // rain is an optional variable
 let rain = data.rain ? `Rainfall in the last 3 hours has
 been ${data.rain['3h']} mm.` : ''

 let expression = data.clouds.all > 80 ? 'overcast' :
 (data.clouds.all < 25 ? 'almost completely clear' :
 'patchy');
 // in case of 0 cloud cover
 expression = data.clouds.all === 0 ? 'clear skies' :
 expression;

 let clouds = `It's ${expression} with a cloud cover of
 ${data.clouds.all}%.`;

 response = `It is currently ${description} with a
 temperature of ${Math.round(temperature)} celsius in
 ${fullName}. The predicted high for today is
 ${Math.round(data.main.temp_max)} with a low of
 ${Math.round(data.main.temp_min)} celsius and
 ${data.main.humidity}% humidity. ${clouds} ${rain}`;
 break;

http://berglondon.com/blog/2010/09/04/b-a-s-a-a-p/
http://berglondon.com/blog/2010/09/04/b-a-s-a-a-p/

Understanding and Responding to Natural Language

[118]

Asking for the weather in a city will now instruct our bot to send this:

Weatherbot can now be a bit more specific with its reporting

Here, we've simply taken the JSON returned from the AJAX call and formatted the
data into something a bit more legible by humans. Rainfall is included, but only if
there actually was any in the last 3 hours (if not, the rain property is omitted from
the returned data). Cloud cover is represented by a percentage, which is perfect for
us as we can assign predetermined statements (patchy, almost completely clear
and clear skies) depending on that percentage.

When generating natural language, think of how your data can be presented.
Percentages are an excellent way of assigning a verbal value. For example, anything
between 80 and 100 percent can use adverbs like extremely or very, whereas we can
use barely and very little for 0 to 20 percent.

For some data sets, a paragraph might be easier to digest rather than a list or
pure data.

The result is a bot that, in a conversational tone, can give a weatherman-like weather
report on the area in question.

Summary
In this chapter, we discussed what NLP is and how it can be leveraged to make a bot
seem far more complex than it really is. By using these techniques, natural language
can be read, processed, and responded to in equally natural tones. We also covered
the limitations of NLP and understood how to differentiate between good and bad
uses of NLP.

In the next chapter, we will explore the creation of web-based bots, which can
interact with Slack using webhooks and slash commands.

[119]

Webhooks and Slash
Commands

Every bot we've created so far shares the same two traits: they rely on commands
issued by users and require a Slack API token. This has been very useful in our bots
so far, but what if we want a bot to post messages to a Slack channel without needing
an API token? Plus what if we want a bot that does not require an API token to
interact with users? An example of this is the GitHub Slack integration, a service
that posts GitHub activity on specific repositories to a Slack channel of your choice.

In this chapter, we will discuss how to use webhooks to get data in and out of Slack
and how to create slash commands that users can interact with throughout Slack.

We will cover the following topics:

•	 Webhooks
•	 Incoming webhooks
•	 Outgoing webhooks
•	 Slash commands
•	 In-channel and ephemeral responses

Webhooks and Slash Commands

[120]

Webhooks
A webhook is a way of altering or augmenting a web application through HTTP
methods. Previously, we used third-party APIs in our bots to get data into and out
of Slack. However, this isn't the only way. Webhooks allow us to post message to
and from Slack using regular HTTP requests with a JSON payload. What makes a
webhook a bot is its ability to post messages to Slack as if they are a bot user.

These webhooks can be divided into incoming and outgoing webhooks, each with
their own purposes and uses.

Incoming webhooks
An example of an incoming webhook would be a service that relays information
from an external source to a Slack channel without being explicitly requested.
An example of this is the aforementioned GitHub Slack integration:

The GitHub integration posts messages about repositories we are interested in

In the preceding screenshot, we can see how a message was sent to Slack after a new
branch was made on a repository this team is watching. This data wasn't explicitly
requested by a team member, but it was automatically sent to the channel as a result
of the incoming webhook.

Other popular examples include a Jenkins integration, where infrastructure changes
can be monitored in Slack (for example, if a server watched by Jenkins goes down,
a warning message can be posted immediately to a relevant Slack channel).

Let's start by setting up an incoming webhook that sends a simple Hello
world message:

1.	 First, navigate to the Custom Integration Slack team page
(https://my.slack.com/apps/build/custom-integration).

https://my.slack.com/apps/build/custom-integration

Chapter 6

[121]

The various flavors of custom integration

2.	 Select Incoming WebHooks from the list, and then select the channel you'd
like your webhook app to post messages to:

Webhook apps will post to a channel of your choosing

Custom webhooks (that is, webhooks created for your team only) use the
selected channel as a default channel to send message to. It is possible to use
the same webhook to post to different channels, as we'll see in a moment.

Webhooks and Slash Commands

[122]

3.	 Once you've clicked on the Add Incoming WebHooks integration button,
you will be presented with an options page that allows you to customize
your integration a little further.

Names, descriptions, and icons can be set from this menu

4.	 Set a customized icon for your integration (for this example, the wave
emoji was used) and copy down the webhook URL, which has the
following format:

https://hooks.slack.com/services/T00000000/B00000000/
XXXXXXXXXXXXXXXXXXXXXXXX

This generated URL is unique to your team, meaning that any JSON payloads sent
via this URL will only appear in your team's Slack channels.

Now, let's throw together a quick test of our incoming webhook in Node. Start a
new Node project (remember you can use npm init to create your package.json)
and install the familiar superagent AJAX library by running the following in
your terminal:

npm install superagent –save

Create a file named index.js and paste the following JavaScript code within it:

const WEBHOOK_URL = [YOUR_WEBHOOK_URL];

const request = require('superagent');

Chapter 6

[123]

request
 .post(WEBHOOK_URL)
 .send({
 text: 'Hello! I am an incoming Webhook bot!'
 })
 .end((err, res) => {
 console.log(res);
 });

Remember to replace [YOUR_WEBHOOK_URL] with your newly generated URL,
and then run the program by executing the following command:

nodemon index.js

Two things should happen now: firstly a long response should be logged in
your terminal and secondly you should see a message like the following in the
Slack client:

The incoming webhook equivalent of "hello world"

The res object that we logged in our terminal is the response from the AJAX request.
Taking the form of a large JavaScript object, it displays information about the HTTP
POST request we made to our webhook URL.

Looking at the message received in the Slack client, notice how the name and
icon are the same as what we set in our integration setup in the team admin site.
Remember that the default icon, name, and channel are used if none are provided,
so let's see what happens when we change that around. Replace your request
AJAX call in index.js with the following:

request
 .post(WEBHOOK_URL)
 .send({
 username: "Incoming bot",
 channel: "#general",
 icon_emoji: ":+1:",
 text: 'Hello! I am different from the previous bot!'
 })
 .end((err, res) => {
 console.log(res);
 });

Webhooks and Slash Commands

[124]

Save the file and nodemon will automatically restart the program. Switch over to
the Slack client and you should see a message like the following pop up in your
#general channel:

New name, icon, and message

In place of icon_emoji, you could also use icon_url to link to a
specific image of your choosing.

If you wish your message to only be sent to one user, you can supply a username as
the value for the channel property:

channel: "@paul"

This will cause the message to be sent from within the Slackbot direct message.
The message's icon and username will match what you either configured in the
setup or set in the body of the POST request.

Finally, let's look at sending links in our integration; replace the text property with
the following and save index.js:

text: 'Hello! Here is a fun link: <http://www.github.com|Github is
great!>'

Slack will automatically parse any links it finds, whether it's in the format
http://www.example.com or www.example.com. By enclosing the URL in
angled brackets and using the | character, we can specify what we would
like the URL to be shown as:

Formatted links are easier to read than long URLs

For more information on message formatting, visit https://api.slack.com/docs/
formatting.

https://api.slack.com/docs/formatting
https://api.slack.com/docs/formatting

Chapter 6

[125]

Note that as this is a custom webhook integration, we can
change the name, icon, and channel of the integration. If
we were to package the integration as a Slack app (an app
which is installable by other teams), then it is not possible to
override the default channel, username, and icon set.

Incoming webhooks are triggered by external sources—an example would be if a
new user signs up to your service or if a product is sold. The goal of the incoming
webhook is to provide easy-to-reach and comprehensible information for your team.
The opposite would be if you want users to get data out of Slack, which can be done
via the medium of outgoing webhooks.

Outgoing webhooks
Outgoing webhooks differ from the incoming variety in that they send data out of
Slack and to a service of your choosing, which in turn can respond with a message to
the Slack channel.

To set up an outgoing webhook, visit the custom integration page of your Slack
team's admin page again (https://my.slack.com/apps/build/custom-
integration). This time, select the Outgoing WebHooks option.

In the next screen, be sure to select a channel, a name, and an icon. Notice how there
is a target URL field to be filled in; we will fill this out shortly.

When an outgoing webhook is triggered in Slack, an HTTP POST request is made
to the URL (or URLs, as you can specify multiples) you provide. So first we need to
build a server that can accept our webhook.

In index.js, paste the following code:

'use strict';
const http = require('http');
// create a simple server with node's built in http module
http.createServer((req, res) => {
 res.writeHead(200, {'Content-Type': 'text/plain'});

 // get the data embedded in the POST request
 req.on('data', (chunk) => {
 // chunk is a buffer, so first convert it to
 // a string and split it to make it more legible as an array
 console.log('Body:', chunk.toString().split('&'));

https://my.slack.com/apps/build/custom-integration
https://my.slack.com/apps/build/custom-integration

Webhooks and Slash Commands

[126]

 });

 // create a response
 let response = JSON.stringify({
 text: 'Outgoing webhook received!'
 });

 // send the response to Slack as a message
 res.end(response);
}).listen(8080, '0.0.0.0');

console.log('Server running at http://0.0.0.0:8080/');

Notice how we require the http module, despite not installing it with
NPM. That is because the http module is a core Node dependency and is
automatically included with your installation of Node.

In this block of code, we start a simple server on port 8080 and listen for
incoming requests.

In this example, we set our server to run at 0.0.0.0 rather than localhost. This is
important as Slack is sending a request to our server, so it needs to be accessible from
the Internet. Setting the Internet Protocol (IP) of our server to 0.0.0.0 tells Node to
use your computer's network-assigned IP address. Therefore, by setting the IP of
our server to 0.0.0.0, Slack can reach your server by hitting your IP on port 8080
(for example, http://123.456.78.90:8080).

If you are having trouble with Slack reaching your server, it is most likely
because you are behind a router or firewall. To circumvent this issue, you
can use a service such as ngrok (https://ngrok.com/). Alternatively,
look into the Port Forwarding settings for your router or firewall.

Let's update our outgoing webhook settings accordingly:

https://ngrok.com/

Chapter 6

[127]

The outgoing webhook settings, with destination URL

Save your settings and run your Node app; test that the outgoing webhook works
by typing a message into the channel you specified in the webhook's settings.
You should then see something like this in Slack:

We built a spam bot

Webhooks and Slash Commands

[128]

Well the good news is that our server is receiving requests and returning a message
to send to Slack. The issue here is that we skipped over the Trigger Word(s) field in
the webhook settings page. Without a trigger word, any message sent to the specified
channel will trigger the outgoing webhook. This causes our webhook to trigger on a
message sent by the outgoing webhook in the first place, creating an infinite loop.

To fix this we could do one of two things:

•	 Refrain from returning a message to the channel when listening to all the
channel's messages

•	 Specify a trigger word or trigger words to ensure we don't spam the channel

Returning a message is optional, yet it is encouraged to ensure a better user
experience. Even a confirmation message such as Message received! is better
than no message, as it confirms to the user that their message was received and
is being processed.

Let's presume we prefer the second option and add a trigger word:

Trigger words keep our webhooks organized

Now, let's try that again, this time sending a message with the trigger word at the
beginning of the message. Restart your Node app and send a new message:

Our outgoing webhook app now functions a lot like our bots from earlier

Great, now switch over to your terminal and see what that message logged:

Body: ['token=KJcfN8xakBegb5RReelRKJng',
 'team_id=T000001',
 'team_domain=buildingbots',
 'service_id=34210109492',
 'channel_id=C0J4E5SG6',
 'channel_name=bot-test',
 'timestamp=1460684994.000598',
 'user_id=U0HKKH1TR',

Chapter 6

[129]

 'user_name=paul',
 'text=webhook+hi+bot%21',
 'trigger_word=webhook']

This array contains the body of the HTTP POST request sent by Slack. In it, we have
some useful data such as the user's name, the message sent, and the team ID. We can
use this data to customize the response or to perform some validation to make sure
the user is authorized to use this webhook.

In our response, we simply sent back a Message received string. However, like with
incoming webhooks, we can set our own username and icon. The channel cannot be
different from the channel specified in the webhook's settings. The same restrictions
apply when the webhook is not a custom integration. This means that if the webhook
was installed as a Slack app for another team, the webhook can only post messages
as the username and icon specified in the setup screen. We will cover Slack apps in
detail in Chapter 7, Publishing Your App.

An important thing to note is that webhooks, either incoming or outgoing, can only
be set up in public channels. This is predominantly to discourage abuse and uphold
privacy, as we've seen that it's trivial to set up a webhook that can record all the
activity in a channel.

If you want similar functionality in private groups or DMs, we can use a slash
command instead.

Slash commands
Commands that begin with a slash (/) are commands that can be used from
anywhere within the Slack client. You are probably already familiar with the
more common ones implemented by Slack themselves. For instance, use the
topic command:

/topic Sloths are great

This will set the channel's topic to "Sloths are great." Like with incoming and
outgoing webhooks, Slack allows teams to configure their own custom slash
commands. To demonstrate their use, we'll build a bot that uses the popular
computational knowledge engine Wolfram Alpha (http://www.wolframalpha.
com/). The end goal is a bot that returns the results from the query submitted via
the slash command.

Unlike webhooks, slash commands can only send data included with the command,
so you are guaranteed to only receive data that was intentionally sent. Because of this
nuance, we get an additional benefit to using slash commands. They are available to
be used from any channel, DM, or private group.

http://www.wolframalpha.com/
http://www.wolframalpha.com/

Webhooks and Slash Commands

[130]

First, let's set up the slash command integration and get a Wolfram Alpha API key.
Although we don't specifically need a Slack token, we do require one to access
Wolfram Alpha's services. Navigate to your team's integration settings (https://
buildingbots.slack.com/apps/manage/custom-integrations), select Slash
Commands, and then select Add Configuration. We're going to use the wolfram
string as our slash command, so let's fill that in and continue.

The slash command must be unique to your team

Now, specify a URL that the slash command will send a request to, similar to what
we did earlier with webhooks.

The slash command can be customized in a different way to webhooks

We have the choice of which HTTP method to use when requesting the provided
URL. If you wish to send data to a server, use the POST method. If you wish to
retrieve data without sending anything, use the GET method. For our Wolfram
Alpha bot, we will be using POST, as we're sending a query to the server we
created earlier.

https://buildingbots.slack.com/apps/manage/custom-integrations
https://buildingbots.slack.com/apps/manage/custom-integrations

Chapter 6

[131]

Take special note of the generated token. This is a unique identifier that you can
use to ensure that all requests coming to your server are from this particular Slack
slash command, allowing you to reject any unwanted requests. We'll get back to the
token later.

Next, we will fill out the autocomplete details. Although optional, it is strongly
recommended that you fill them out anyway, as they give clear instructions for
your users on how to use your slash command.

Help text is incredibly helpful to users who have never used your command before

Similar to other third-party APIs we've used in this book, the Wolfram Alpha
API requires an API token to access their computational services. To get one,
navigate to the following URL and follow the on-screen sign up instructions:
https://developer.wolframalpha.com/portal/apisignup.html.

Note that the Wolfram Alpha API is only free up to 2000 requests per
month. If your slash command exceeds that amount, your requests will be
denied unless you pay for a higher-tier service.

The Wolfram Alpha API sends responses in XML, which we'll need to convert to
JSON for easier use. Luckily, there is an NPM package that can abstract this problem
away for us: node-wolfram (https://www.npmjs.com/package/node-wolfram).
Install the node-wolfram package by running the following command:

npm install node-wolfram –save

https://developer.wolframalpha.com/portal/apisignup.html
https://www.npmjs.com/package/node-wolfram

Webhooks and Slash Commands

[132]

Once you have your key and you've installed node-wolfram, paste the following
code in index.js:

'use strict';

const http = require('http');
const request = require('superagent');

const WOLFRAM_TOKEN = [YOUR_WOLFRAM_API_TOKEN];
const SLACK_TOKEN = [YOUR_SLACK_TOKEN];

const Client = require('node-wolfram');
const wolfram = new Client(WOLFRAM_TOKEN);

// create a simple server with node's built in http module
http.createServer((req, res) => {
 res.writeHead(200, {'Content-Type': 'text/plain'});

 // get the data embedded in the POST request
 req.on('data', (chunk) => {
 // chunk is a buffer, so first convert it
 // to a string and split it to make it legible
 console.log('Body:', chunk.toString().split('&'));

 let bodyArray = chunk.toString().split('&');
 let bodyObject = {};

 // convert the data array to an object
 for (let i = 0; i < bodyArray.length; i++) {
 // convert the strings into key value pairs
 let arr = bodyArray[i].split('=');
 bodyObject[arr[0]] = arr[1];
 }

 // if the token doesn't match ours, abort
 if (bodyObject.token !== SLACK_TOKEN) {
 return res.end('Invalid token');
 }

 queryWolfram(bodyObject.text.split('+').join(' '), (err,
 result) => {
 if (err) {
 console.log(err);
 return;

Chapter 6

[133]

 }

 // send back the result to Slack
 res.end(result);
 });
 });
}).listen(8080, '0.0.0.0');

console.log('Server running at http://0.0.0.0:8080/');

// make sure to unescape the value so we don't get Unicode
let query = unescape(bodyObject.text.split('+').join(' '));

queryWolfram(query, (err, result) => { wolfram.query(message,
(err, result) => {
 if (err) {
 return done(err);
 }

 // if the query didn't fail, but the message wasn't understood
 // then send a generic error message
 if (result.queryresult.$.success === 'false') {
 return done(null, 'Sorry, something went wrong, please try
 again');
 }
 let msg = '';

 for (let i = 0; i < result.queryresult.pod.length; i++) {
 let pod = result.queryresult.pod[i];
 msg += pod.$.title + ': \n';

 for (let j = 0; j < pod.subpod.length; j++) {
 let subpod = pod.subpod[j];

 for (let k = 0; k <subpod.plaintext.length; k++) {
 let text = subpod.plaintext[k];
 msg += '\t' + text + '\n';
 }
 }
 }

 done(null, msg);
 });
}

Webhooks and Slash Commands

[134]

Simply put, this block of code listens for incoming requests at port 8080. Once data
is received (via a POST request), we convert the data to a JavaScript object for easy
use. If the token sent in the request matches the one hardcoded in our program, we
send a request to Wolfram Alpha that includes the slash command's content. Luckily,
Wolfram Alpha run their own natural language processing (NLP), so we can just
send the user's input and let Wolfram Alpha do the heavy lifting. Once we receive a
callback from the Wolfram Alpha API, we return the results to Slack, which posts it
in the Slack channel. Run your server and type the following command into Slack to
see it in action:

/wolfram 2 x 2

After a few moments, you should see the result:

Wolfram Alpha calculates a simple math problem

Success! Now let's try a more challenging query:

/wolfram distance between earth and moon

That request should result in something like this:

The query took too long

Chapter 6

[135]

Oh dear, it looks like our query timed out. Were we to add some logging to our app,
we'd see that although the Wolfram Alpha API does eventually return a result, it
takes more than the maximum timeout period of Slack webhook integrations (3,000
milliseconds). This causes the slash command to fail and displays the preceding
error message.

To solve this, let's look at the data received from Slack initially; the body from the
previous slash command looks like this:

Body: ['token=86oxKgPrkxrvPHpmleaP8Rbs',
 'team_id=T00000000',
 'team_domain=buildingbots',
 'channel_id=C0J4E5SG6',
 'channel_name=bot-test',
 'user_id=U0HKKH1TR',
 'user_name=paul',
 'command=%2Fwolfram',
 'text=distance+between+earth+and+moon',
 'response_url=https%3A%2F%2Fhooks.slack.com%2Fcommands
 %2FT0HKKH1T9%2F35399194752%2Fm9mIVSHYjMdnwXWyCTYYTIZj']

The last index of the Body array is what interests us—a response URL. Should your
calculations take longer than the maximum timeout of 3000 milliseconds, Slack
provides us with a URL which we can make a POST HTTP request to, much like
how we sent webhook messages.

If your slash command does take longer than the maximum timeout and you're
using the request URL, it is highly recommended that you return a message to
Slack, letting the user know that their request is processing.

Replace the http.createServer block in your code with the following, noting the
highlighted areas:

// create a simple server with node's built in http module
http.createServer((req, res) => {
 res.writeHead(200, {'Content-Type': 'text/plain'});

 // get the data embedded in the POST request
 req.on('data', (chunk) => {
 // chunk is a buffer, so first convert it to a string
 // and split it to make it legible
 console.log('Body:', chunk.toString().split('&'));

 let bodyArray = chunk.toString().split('&');
 let bodyObject = {};

Webhooks and Slash Commands

[136]

 // convert the data array to an object
 for (let i = 0; i < bodyArray.length; i++) {
 // convert the strings into key value pairs
 let arr = bodyArray[i].split('=');
 bodyObject[arr[0]] = arr[1];
 }

 // if the token doesn't match ours, abort
 if (bodyObject.token !== SLACK_TOKEN) {
 return res.end('Invalid token');
 }

 // send a message immediately to confirm that
 // the request was receive it's possible that the
 // query will take longer than the time Slack waits
 // for a response (3000ms), so we'll send a
 // preliminary response and then send the results later
 res.end('Calculating response, be with you shortly!');

 // make sure to unescape the value so we don't get Unicode
 let query = unescape(bodyObject.text.split('+').join(' '));

 queryWolfram(query, (err, result) => {
 wolfram.query(message, (err, result) => {
 if (err) {
 console.log(err);
 return;
 }

 // send the result from the wolfram alpha request,
 // which probably took longer than 3000ms to calculate
 request
 .post(unescape(bodyObject.response_url))
 .send({
 text: result
 })
 .end((err, res) => {
 if (err) console.log(err);
 });
 });
 });
}).listen(8080, '0.0.0.0');

After confirming that the slash command request came from our team, but before we
even start the Wolfram Alpha API request, we return a confirmation message to the
Slack channel letting the user know that their request is in the works.

Chapter 6

[137]

Once Wolfram Alpha has returned our data, we send an HTTP POST request to the
response URL provided to us in the slash command's initial request body. Let's try
that last command again:

/wolfram distance between earth and moon

This should return a confirmation message:

A confirmation message lets the user know things are happening

A few seconds later, we should see the full result of the slash command query:

Our slash command returns an abundance of data

Webhooks and Slash Commands

[138]

With our slash command working as expected, let's look at a quirk of the
returned output.

In-channel and ephemeral responses
You might have noticed that when the Wolfram Alpha bot responds, it has the text
Only you can see this message next to its name. As the text implies, the result of our
bot is only visible to the user who initiated the slash command. This is an example
of an ephemeral response. Note that the original slash command's text is also only
viewable to the user that executed it. The opposite of ephemeral is an in-channel
response, which can show both the slash command and result in the channel,
for all to see.

By default, all slash command responses are set to ephemeral mode by the Slack API.
Let's look at changing that and send in-channel messages instead. Once again, let's
replace the contents of http.createServer. Go over the changes step by step:

// create a simple server with node's built in http module
http.createServer((req, res) => {
 res.writeHead(200, {'Content-Type': 'application/json'});

The main difference here is that we've changed the response's header content type to
be application/json. This notifies Slack to expect a JSON package in string form.

The code is as follows:

// get the data embedded in the POST request
req.on('data', (chunk) => {
 // chunk is a buffer, so first convert it to a string
 // and split it to make it legible
 console.log('Body:', chunk.toString().split('&'));

 let bodyArray = chunk.toString().split('&');
 let bodyObject = {};

 // convert the data array to an object
 for (let i = 0; i < bodyArray.length; i++) {
 // convert the strings into key value pairs
 let arr = bodyArray[i].split('=');
 bodyObject[arr[0]] = arr[1];
 }

 // if the token doesn't match ours, abort
 if (bodyObject.token !== SLACK_TOKEN) {
 return res.end(JSON.stringify({

Chapter 6

[139]

 response_type: 'ephemeral',
 text: 'Invalid token'
 }));
}

Our error response now requires that it be in stringified JSON format. Also, we
add the response type ephemeral, which means that the error message will only
be visible to the user who initiated the slash command:

// send a message immediately to confirm that
// the request was receive it's possible that the
// query will take longer than the time Slack waits
// for a response (3000ms), so we'll send a
// preliminary response and then send the results later
res.end(JSON.stringify({
 response_type: 'in_channel',
 text: 'Calculating response, be with you shortly!'
}));

Now, we specifically want an in-channel response. In this context, it means
that both the slash command and the processing response will be visible to all
in the channel:

Both the original slash command and the interim response are visible

And finally we query Wolfram|Alpha:

// make sure to unescape the value so we don't get Unicode
let query = unescape(bodyObject.text.split('+').join(' '));

queryWolfram(query, (err, result) => {
 if (err) {
 console.log(err);
 return;
 }

 // send the result from the wolfram alpha request,
 // which probably took longer than 3000ms to calculate

Webhooks and Slash Commands

[140]

 request
 .post(unescape(bodyObject.response_url))
 .send({
 response_type: 'in_channel',
 text: result
 })
 .end((err, res) => {
 if (err) console.log(err);
 });
 });
 });
}).listen(8080, '0.0.0.0');

Here, we again ensure that the Wolfram Alpha result is visible to the entire
channel. Finally, let's make some improvements to the display of the data in
our queryWolfram function:

function queryWolfram(message, done) {
 wolfram.query(message, (err, result) => {
 if (err) {
 return done(err);
 }

 // if the query didn't fail, but the message wasn't understood
 // then send a generic error message
 if (result.queryresult.$.success === 'false') {
 return done(null, 'Sorry, something went wrong, please try
 again');
 }

 let msg = [];

 for (let i = 0; i < result.queryresult.pod.length; i++) {
 let pod = result.queryresult.pod[i];

 // print the title in bold
 msg.push(`*${pod.$.title}:*\n`);

 for (let j = 0; j < pod.subpod.length; j++) {
 let subpod = pod.subpod[j];

 for (let k = 0; k <subpod.plaintext.length; k++) {
 let text = subpod.plaintext[k];
 if (text) {

Chapter 6

[141]

 // add a tab to the beginning
 msg.push('\t' + text + '\n');
 } else {
 // text is empty, so get rid of the title as well
 msg.pop();
 }
 }
 }
 }

 // join the msg array together into a string
 done(null, msg.join(''));
 });
}

Improvements here include bolding the title of a section and removing sections that
have no text associated.

Now that we've put it all together, let's test it out:

Wolfram Alpha can also be used to get definitions of popular algorithms

Bear in mind that slash commands are available universally in your Slack team.
In our case, it means that the Wolfram|Alpha bot can be triggered from any
channel, DM, or private group.

Webhooks and Slash Commands

[142]

Using webhooks and slash commands
Now that we have a firm grasp on what webhooks and slash commands are, we
should establish when to use them. First, we should consider when we'd use
a webhook or slash command over a bot user, which we've learnt to build in
previous chapters.

A bot user generally operates on a one-to-one basis; every bot requires a Slack
token unique to that bot, meaning that the bot can only interact with the team
associated with that token. This also allows the bot to maintain a real-time messaging
connection with Slack and to reconnect in case of connection failure. Webhooks and
slash commands, on the other hand, exist as external services and can be reused by
many teams. By removing the need for a Slack token, you open up your app to be
used by many other teams.

Use this flowchart to decide whether a webhook or a slash command is best for
your needs:

When to use webhooks or slash commands

Chapter 6

[143]

In the preceding diagram, we mention the concepts of active and reactive. We
covered these concepts back in Chapter 3, Adding Complexity, but the basic gist is that
active apps and bots post messages without requiring input, whereas reactive bots
respond to stimuli in the form of user input.

Summary
In this chapter, we saw what webhooks are and how to set them up to send data out
of Slack and get data into Slack through a third-party server. We also discussed slash
commands and how to implement them.

In the next chapter, we will cover how to publish your app so that other teams can
make use of your bots, webhooks, and slash commands.

[145]

Publishing Your App
At this point, you have all the knowledge needed to build a bot that can increase
your productivity and improve communications across teams. Hopefully, by now
you have already thought of an idea for a bot that will not just make your own
life easier but may also be useful for others. In this chapter, you will learn how
to make your bot accessible to users outside of your own team and across the
Slack community.

We will cover the steps necessary to add your bot to the Slack app directory and to
make it accessible to others. We will review the following steps to add your bot onto
the Slack app directory:

•	 Registering your bot and obtaining tokens
•	 Understanding the OAuth process
•	 Configuring the Add to Slack button
•	 Scopes
•	 Submitting your app or bot to the app directory
•	 Monetizing your bot

The Slack app directory
In order to make adding apps easy for their users, Slack has created the app directory
(https://slack.com/apps). This is a place to shop for apps and bots to add to your
Slack team. Like other app stores available, every app submitted to the app directory
is controlled and has to be approved by Slack itself to counteract spam and abuse.

https://slack.com/apps

Publishing Your App

[146]

It is possible for other teams to use your bot by means of webhooks, as we saw
in the previous chapter. However, if you are trying to reach a wide audience and
potentially monetize your bot, the app directory is the most efficient way.

The app directory makes adding new apps easy

The end goal of this chapter is to allow users to add a bot to their Slack team by
clicking an Add to Slack button, which we will cover in detail later.

Let's start by registering an app. In this example, we will add the Wikibot bot,
which we built in Chapter 3, Adding Complexity.

Chapter 7

[147]

Please note that our registering of Wikibot (and the use of the Wikipedia
API) is for demonstrative purposes only. Always check the terms and
conditions of a third-party API before using it for a bot you intend to
publish. In the case of Wikibot, for example, we can use the Wikipedia
API but aren't allowed to publish a bot named Wikipedia bot, as we
do not own the trademark.

Registering your app and obtaining tokens
Certain unique tokens are required in order to successfully authenticate with Slack's
OAuth servers. This is necessary so that Slack can determine whether we are who we
say we are and whether our app or bot is actually integrated with the team we are
attempting to get access to.

We start by navigating to the Slack new app registration page at https://api.
slack.com/applications/new. Fill out the form by picking a name for your
bot, the team it originated from, descriptions of your bot, links to help pages,
and a redirect URI:

Be as descriptive as you can when filling out this form

https://api.slack.com/applications/new
https://api.slack.com/applications/new

Publishing Your App

[148]

After saving your settings, you can choose to set up a bot user, webhook, or slash
command. For Wikibot, we will be setting up a bot user.

If your specified username is taken, Slack will edit it slightly to avoid conflicts

Once you've saved your changes, you should be presented with OAuth information
on the next screen. First, make sure to save the Client ID and Client Secret codes
from this page before moving on:

Never share your client secret with anyone

Chapter 7

[149]

This process does not make your bot visible to the entire Slack user base;
it simply registers your intent to develop an app. You will be able to test
your app through the OAuth process. We will cover how to submit your
bot to the app directory in a later section.

Understanding the OAuth process
In order to implement a bot user in a team that is not our own, we require a bot
token similar to the ones we created earlier for our own team. We can request this
token, but first we must prove that we are who we say we are using the OAuth
process. OAuth (Open Authentication) is an open standard for authentication
used by many companies, large and small.

The authentication process works through the following steps:

1.	 The user clicks the Add to Slack button.
2.	 Slack sends a request to the redirect URI provided in our app's settings page.
3.	 Once the request is received on our server, we redirect it to the authorization

API endpoint (https://slack.com/oauth/authorize) and include the
following parameters in the query string:

°° client_id: This is the unique ID given to us when we first created
our app.

°° scope: This includes the permissions we require for our app. We will
go into more detail on scopes later in this chapter.

°° redirect_uri: This is an optional parameter. This is the URI
that Slack will send the authorization results to. If left blank, the
redirect_uri specified in the app settings page is used.

°° State: This is a string we create; it could contain data we wish to
preserve or function as our own identification method. For example,
we could populate this field with a secret phrase that only we know,
which we can later use to ensure that this request came from a
trusted source.

°° Team: This is the Slack team ID we wish to restrict our application to.
This is useful when debugging our integration.

https://slack.com/oauth/authorize

Publishing Your App

[150]

4.	 Slack sends a HTTP GET request to the redirect URI provided in our
previous request. If absent, it defaults to the URI we provided in our
app's settings page. The request contains the following parameters:

°° code: This is a temporary code generated by Slack, and it is used to
confirm our identity

°° state: This is the string we created earlier, and it can be used to
make sure this request is legitimate

5.	 Armed with all the tools and codes we need, we make a request for a
bot user token from Slack in another HTTP GET request, passing the
following parameters:

°° client_id: This is the unique client ID given to us in the app's
settings page

°° client_secret: This is the unique and secret ID given to us in the
app's settings page

°° code: This is the code given to us by the request in step 4
°° redirect_uri: This must match the previous redirect_uri if one

was sent; otherwise, it is optional

6.	 Finally, if all went well, we will receive a response from Slack with all the
data we require. It should look something like this:

{
 ok: true,
 access_token: 'xoxp-xxxxxxxxxxx-xxxxxxxxxxx-xxxxxxxxxxx-
 xxxxxxxxxx',
 scope: 'identify,bot',
 user_id: 'Uxxxxxxxx',
 team_name: 'Building Bots',
 team_id: 'Txxxxxxxx',
 bot: {
 bot_user_id: 'U136YALCW',
 bot_access_token: 'xoxb-xxxxxxxxxxx-
 xxxxxxxxxxxxxxxxxxxxxxxx'
 }
}

Chapter 7

[151]

To make this a bit easier to understand, let's look at a chart of these transactions:

Slack's OAuth authorization procedure

Now, let's look at the preceding code example. In order to make our lives a bit
easier, we will use the Express web framework (http://expressjs.com/) and
the familiar superagent AJAX library. Make sure to install both by using the
following command:

npm install –save express superagent

Next, let's put our server together; create or reuse an index.js file and paste the
following code:

const request = require('superagent');
const express = require('express');

const app = express();

const CLIENT_ID = 'YOUR_CLIENT_ID';
const CLIENT_SECRET = 'YOUR_CLIENT_SECRET';

app.get('/', (req, res) => {
 res.redirect(`https://slack.com/oauth/authorize?client_id=${
 CLIENT_ID}&scope=bot&redirect_uri=${escape('http://YOUR_
 REDIRECT_URI/bot')}`);
});

http://expressjs.com/

Publishing Your App

[152]

app.get('/bot', (req, res) => {
 let code = req.query.code;

 request
 .get(`https://slack.com/api/oauth.access?client_id=${
 CLIENT_ID}&client_secret=${CLIENT_SECRET}&code=${code}&
 redirect_uri=${escape('http://YOUR_REDIRECT_URI/bot')}`)
 .end((err, res) => {
 if (err) throw err;
 let botToken = res.body.bot.bot_access_token;
 console.log('Got the token:', botToken);
 });

 res.send('received');
});

app.listen(8080, () => {
 console.log('listening');
});

The highlighted areas indicate where you should fill in your own tokens and URIs.

It is highly recommended to use a service such as ngrok in
order for your locally started server to be accessible from the
Internet. Visit https://ngrok.com/ for more details and
setup instructions. You should use ngrok only for development
purposes. In production, you should use a dedicated server.

Navigate to the Slack button documentation page (https://api.slack.com/docs/
slack-button#button-widget) and scroll down till you see the following
test interface:

You can use this area to test that your integrations authenticate properly

https://ngrok.com/
https://api.slack.com/docs/slack-button#button-widget
https://api.slack.com/docs/slack-button#button-widget

Chapter 7

[153]

Click on the Add to Slack button and you should be presented with a screen that
asks you to confirm whether you'd like to authorize your bot for use in your channel.
Click on the Authorize button and switch over to your terminal. The bot token we
need will show up in a log:

listening

Got the token: xoxb-37236360438-xxxxxxxxxxxxxxxxxxxxxxxx

We can use our token to start our bot user and have it respond to and interact with
users from other teams. Let's do that with Wikibot now. We will take the Wikibot
code featured earlier in this book and alter it to function with the OAuth procedure
outlined before. Replace the contents of index.js with the following:

'use strict';

const Bot = require('./Bot');

const wikiAPI = 'https://en.wikipedia.org/w/api.php?format=json&
action=query&prop=extracts&exintro=&explaintext=&titles=';
const wikiURL = 'https://en.wikipedia.org/wiki/';

const request = require('superagent');
const express = require('express');

const app = express();

const CLIENT_ID = 'YOUR_CLIENT_ID';
const CLIENT_SECRET = 'YOUR_CLIENT_SECRET';

app.get('/', (req, res) => {
 res.redirect(`https://slack.com/oauth/authorize?client_id=$
 {CLIENT_ID}&scope=bot&redirect_uri=${escape('http://[YOUR_
 REDIRECT_URI]/bot')}`);
});

app.get('/bot', (req, res) => {
 let code = req.query.code;

 request
 .get(`https://slack.com/api/oauth.access?client_id=$
 {CLIENT_ID}&client_secret=${CLIENT_SECRET}&code=${code}&
 redirect_uri=${escape('http://[YOUR_REDIRECT_URI]bot')}`)
 .end((err, result) => {
 if (err) {
 console.log(err);

Publishing Your App

[154]

 return res.send('An error occured! Please try again
 later');
 }
 console.log(res.body);

 let botToken = result.body.bot.bot_access_token;
 console.log('Got the token:', botToken);

 startWikibot(result.body.bot.bot_access_token);

 res.send('You have successfully installed Wikibot! You can
 now start using it in your Slack team, but make sure to
 invite the bot to your channel first with the /invite
 command!');
 });
});

app.listen(8080, () => {
 console.log('listening');
});

function startWikibot(token) {
 const bot = new Bot({
 token: token,
 autoReconnect: true,
 autoMark: true
 });

 // The rest of the familiar Wikibot code follows.
 // Visit https://github.com/PaulAsjes/BuildingBots for the
 // complete source code
}

Let's try this out. Run the Node application after making sure that your client_id,
client_secret, and redirect_uri are inserted in the highlighted sections of the
preceding code. To test the integration, navigate to the documentation on the Add to
Slack button here: https://api.slack.com/docs/slack-button#button-widget.
As before, scroll down till you see the test widget, tick the bot box, and click on the
Add to Slack button.

https://api.slack.com/docs/slack-button#button-widget

Chapter 7

[155]

Below this test widget is the embed code you should use when placing
the Add to Slack button on your website.

Note how Slack has automatically renamed our bot to @wikibot2 to avoid conflict

Once authorized, you should see the following message:

You have successfully installed Wikibot! You can now start using it in
your Slack team, but make sure to invite the bot to your channel first
with the /invite command!

We returned a simple string in this example. As per best practices, we need to
redirect to a web page with some instructions on how to operate Wikibot.

Publishing Your App

[156]

Switch to the Slack client and to the channel you'd like to incorporate Wikibot.
As we discussed in Chapter 2, Your First Bot, bot users have to be manually
invited to a channel, so let's do that and test our bot:

Our bot is successfully integrated and working!

Wikibot will now continue to function as long as our Node service is running.

Next, we will look at the other scopes available for our use.

Scopes
OAuth scopes allow you to specify exactly what access your app needs to perform its
functions. In the previous example, we requested the bot scope, which gives our bots
access to all the actions a bot user can perform. For example, the channels:history
scope gives us access to the channel's chat history and users:read allows us to
access the full list of users in the team. There is a long list of scopes available (which
you can review at https://api.slack.com/docs/oauth-scopes), but we will focus
on the three most likely to be used scopes in our apps:

•	 bot: This provides a bot token, allowing us to connect to the team as a
bot user

•	 incoming-webhook: This provides an incoming webhook token
•	 commands: This provides a Slack token, which we can use to ensure that the

incoming slash command requests are valid

Scopes of the bot variety automatically include a subset of other
scopes needed for the bot to perform. For more information, visit
https://api.slack.com/bot-users#bot-methods.

https://api.slack.com/docs/oauth-scopes
https://api.slack.com/bot-users#bot-methods

Chapter 7

[157]

Multiple scopes can be requested without issue. Here's an example of the bot,
incoming webhook and command scopes being requested in our initial redirect:

app.get('/', (req, res) => {
 res.redirect(`https://slack.com/oauth/authorize?
 client_id=${CLIENT_ID}&scope=bot+incoming-
 webhook+commands&redirect_uri=${escape
 ('http://YOUR_REDIRECT_URI/bot')}`);
});

Note how the requested scopes are separated with a + symbol. This will return the
following object after we authenticate:

{
 ok: true,
 access_token: 'xoxp-xxxxxxxxxxx-xxxxxxxxxxx-xxxxxxxxxxx-
 xxxxxxxxxx',
 scope: 'identify,bot,commands,incoming-webhook',
 user_id: 'Uxxxxxxxx',
 team_name: 'Building Bots',
 team_id: 'Txxxxxxxx',
 incoming_webhook:
 { channel: '#bot-test',
 channel_id: 'Cxxxxxxxx',
 configuration_url:
 'https://buildingbots.slack.com/services/xxxxxxxxx',
 url: 'https://hooks.slack.com/services/
 Txxxxxxxx/Bxxxxxxxx/xxxxxxxxxxxxxxxxxxxxxxxx' },
 bot:
 {
 bot_user_id: 'Uxxxxxxxx',
 bot_access_token: 'xoxb-xxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx'
 }
}

Instead of using the + symbol, scopes can also be
comma separated.

We now have all the pieces we need to create a bot (the bot_access_token),
an incoming webhook (the url parameter in the incoming_webhook object),
and the access_token we use for slash commands.

Publishing Your App

[158]

Submitting your app to the app directory
Once you have tested your integration within your team's channel, and you are
happy with your bot, it's time to submit it to the app directory. To do so, first
ensure that your application conforms to Slack's checklist for deploying an app
(https://api.slack.com/docs/slack-apps-checklist). In short, your app must:

•	 Request only those scopes that are actually in use.
•	 Display the Add to Slack button on a webpage. You are required to have

your own website with instructions and help for new users.
•	 Have an appropriate name (for example, no trademark or

copyright infringement).
•	 Have an app or bot icon that is clear and distinctive.
•	 Have a high-quality icon that is at least 512 x 512 pixels in size.
•	 Include short and long descriptions of your bot's actions.
•	 Include an installation link (this can simply be a webpage displaying the Add

to Slack button and a guide on how to use your bot).
•	 Feature an customer support link and e-mail, in case users run into problems

installing your bot.
•	 Include a link to a privacy policy. Your bot could potentially be listening on

private conversations, so you will need to specify exactly what data your bot
will be collecting (if any).

•	 Have correct formatting and spelling. Your bot should use clear language
and not contain any errors.

Note that our example, Wikibot, fails the appropriate name clause, as Wikipedia is
clearly a registered trademark to which we do not own the rights. On this basis
alone, Wikibot would be rejected.

Once you have confirmed that your app or bot conforms to the previous points,
you can submit your application for review at https://api.slack.com/submit.

Like other app stores, a review process is mandatory for all new submissions.
The length of the review period is highly dependent on the complexity of your
app and on the quantity of submissions the Slack admissions team has to process.

When you are ready to publish your app to the Slack app directory, you
require hosting. A great way to get your bot up and running quickly is to
use Beep Boop https://beepboophq.com/. A paid service, Beep Boop
will host your Slack bots for you so you can focus on developing rather
than infrastructure.

https://api.slack.com/docs/slack-apps-checklist
https://api.slack.com/submit
https://beepboophq.com/

Chapter 7

[159]

To ensure that your bot reaches your intended audience, consider submitting
it to useful websites such as Botwiki (http://botwiki.org), botlist (http://
botlist.co), and Product Hunt (http://www.producthunt.com) in order
to get maximum exposure.

Monetizing your bot
Monetizing your bot, of course, is entirely optional and how you monetize it is
dependent on the function of your bot and whether there is a market. Bear in mind
that if your goal is to sell your bots for a one-off price, the Slack app directory does
not support monetary transfers.

All apps in the app directive are free to install, but how you convert your user base
to paying customers is left up to you.

There are a variety of methods to do this and there is no single correct way or
Slack-sanctioned method. A popular method employed by companies such as Zoho
Expense (https://www.zoho.com/us/expense/slack-integration/) is a payment
plan based on users. The service is free for small teams, but once you require more
than three users to have access, you have to migrate to a paid tier.

The idea here is similar to APIs we have encountered, such as Wolfram Alpha. This
means using a tiered approach where a free tier exists (tied either to amount of calls
made or an expiration date), but paid tiers are optional if more requests are needed.

Remember that when attempting to monetize your bot, the "try before you buy" sales
tactic is key here. Users are unlikely to convert into paying customers if they don't
have an idea of how your bot works and whether it is actually beneficial for them.
Consider having either a free trial period or a free tier with limited functionality.

Above all, the most important aspect is ensuring that you have a product that is truly
worth paying for. As useful as our to-do bot from Chapter 4, Using Data is, it's unlikely
that anyone would pay money for such a simple bot, as free alternatives are readily
available or easily recreated.

Therefore, the focus of your bot should be the solving of a particular problem first
and monetizing a distant second.

http://botwiki.org
http://botlist.co
http://botlist.co
http://www.producthunt.com
https://www.zoho.com/us/expense/slack-integration/

Publishing Your App

[160]

Summary
In this chapter, you saw how to make your app accessible to other teams via the
Slack App Directory. You saw how to request scopes from Slack to ensure that your
apps have the correct permissions to perform actions. Finally, you learned how to
correctly authenticate your apps with Slack and obtain the tokens required to make
your bots, webhooks, and slash commands work.

By following the lessons in this book, you have obtained all the knowledge and tools
required to create a world-class Slack bot. It is now up to you to create the next leap
forward in bot technology and to push the boundaries of how we interact with bots
to solve problems and achieve optimum efficiency.

To perhaps inspire you further, you should be aware that chat bots in general and
Slack bots in particular are enjoying an unprecedented explosion in popularity and
recognition.

At the beginning of his keynote speech at the 2016 Microsoft Build developers
conference, Microsoft CEO Satya Nadella prophesized the future of bots:

"Bots are the new apps. People-to-people conversations, people-to-digital assistants,
people-to-bots and even digital assistants-to-bots. That's the world you're going to
get to see in the years to come."

His argument is an intriguing one: that bots will potentially replace apps as the main
source of communication between a company and their clients.

Facebook has also seen the potential in bots. In April 2016, they announced bots
for their Messenger Platform, which is expected to see tremendous activity in the
coming months and years.

Although this book focused on building bots specifically for the Slack platform, the
techniques, best practices, and theory are all valid for any bot platform. Armed with
this knowledge, you have everything you need to become a competent developer in
this new bot revolution.

Happy coding!

Chapter 7

[161]

Further reading
In this book, we used the Node Slack client directly to build our bots. Following
this package on GitHub is the best way of staying up to date with new features and
changes in the Slack ecosystem. There are, however, alternatives to using the official
Node Slack client. Botkit (https://github.com/howdyai/botkit) is a fantastic
package meant to abstract away a lot of the underlying concepts and streamline the
bot creation process. Botkit also supports creating bots for Facebook Messenger for
easy cross-platform bot development. If you wish to bootstrap the creation of your
bot and get it up and running as soon as possible, consider using Botkit.

https://github.com/howdyai/botkit

[163]

Index
A
access

restricting 31-33
Add to Slack button

URL 154
admins

adding 33
removing 33
URL 33

app
deploying, URL 158
registering 147-149
registration, URL 147
submitting, to app directory 158

app directory
about 145-147
app, submitting 158

application program interface (API) 2, 39
asynchronous 68
authenticated event 25
authorization API endpoint

URL 149

B
Beep Boop

URL 158
bot

commands 46-48
connecting 69, 70
debugging 33-37
inputs, sanitizing 49-52
monetizing 159

bot, building
about 6

bot, connecting 16, 17
channel, joining 17, 18
channels. getting 19, 21
development tools installing,

NPM used 7, 8
members, getting in channel 21-23
message, sending to channel 18, 23, 24
new project, creating 8-13
Node.js, installing 6, 7
Slack API token, creating 14-16
slack object 18, 19

botlist
URL 159

Botwiki
URL 159

C
channel

getting 19
joining 17, 18
members, getting 21-23
message, sending 18-24

classifiers
about 108, 109
trained classifiers, using 109-115

D
data

displaying, in natural way 100
retrieving 68, 69
saving 68, 69

Dice coefficient 97
direct message (DM)

sending 30, 31
dynamic storage 70-72

[164]

E
entities 114
ES6 6
ES2015 6
Express web framework

URL 151
external API integration

about 52-61
error handling 61, 62

H
hashes 73, 74
Hubot

URL 3
Hypertext Transfer Protocol (HTTP) 53

I
in channel

and ephemeral responses 138-141
incoming webhooks

about 120-124
URL 120

inflection 99, 100
Internet Protocol (IP) 126
iron-node

URL 33

J
Jaro-Winkler 97
JavaScript Object Notation (JSON) 8, 54

K
keywords

classes, using 39-42
reactive bots 43-46
responding to 39

L
latency

URL 77
Levenshtein distance 97
lists 75

M
Matt Jones

URL 117
mentions 105-107
message event

using 25-27
Mozilla Developer Network (MDN) 41

N
Natural

URL 90
natural language processing (NLP)

about 88-90, 134
fundamentals 91
generation 115, 116
uses 103, 104

natural language toolkit (NLTK)
URL 90

ngrok
URL 126

Node ES6 guide
URL 6

Node.js (Node)
installing 6

nodemon
URL 7

Node Package Manager (NPM)
used, for installing development tools 7

node-wolfram
URL 131

O
OAuth (Open Authentication)

process 149-156
OAuth (Open Authentication) scopes

about 156, 157
URL 156

Open Weather Map 100
outgoing webhooks

about 125-129
URL 125

[165]

P
Product Hunt

URL 159

Q
Query GeoParser

URL 113

R
reactive bots 43-46
Real Time Messaging (RTM) client 10
Real Time Messaging (RTM) platform 3
Redis

about 63, 64
best practices 77-82
client implementations, URL 64
client, URL 69
connecting to 66, 67
installing 64
simple to-do example 82-87
URL 64, 65

Redis, installing
on Mac OS X 65
on Unix 65, 66
on Windows 65

representational state transfer (REST)
service 53

responses
about 25
authenticated event 25
message event, using 25-27
spam, avoiding 27-30

S
sets

about 75
sorted sets 76

Slack
about 1, 2
app directory 145-147
as platform 2-4
goals 4
URL 2, 145

Slack API token
creating 14-16

slash commands
about 129-138
and webhooks, using 142, 143

spam
avoiding 27-30

stemmers 94-96
string distance 97, 98

T
tokenizers

about 92, 93
URL 93

tokens
obtaining 147-149

trained classifiers
using 109-114

typing indicator 60

U
uncanny valley 116-118
Uniform Resource Link (URL) 54

W
webhooks

about 120
and slash commands, using 142, 143
incoming webhooks 120-125
outgoing webhooks 125-129

Wolfram Alpha
URL 129, 130

Z
Zoho Expense

URL 159

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Slack

	Introduction to Slack
	Slack as a platform
	The end goal
	Summary

	Chapter 2: Your First Bot

	Preparing your environment
	Installing Node.js
	Installing the development tools using NPM
	Creating a new project
	Creating a Slack API token
	Connecting a bot
	Joining a channel
	Sending a message to a channel
	The slack object
	Getting all the channels
	Getting all members in a channel
	Sending a message to a channel

	Basic responses
	The authenticated event
	Using the message event
	Avoiding spam

	Sending a direct message
	Restricting access
	Adding and removing admins

	Debugging a bot
	Summary

	Chapter 3: Adding Complexity

	Responding to keywords
	Using classes
	Reactive bots

	Bot commands
	Sanitizing inputs

	External API integration
	Error handling

	Summary

	Chapter 4
: Using Data
	Introduction to Redis
	Installing Redis
	Mac OS X
	Windows
	Unix

	Connecting to Redis
	Saving and retrieving data
	Connecting bots
	Dynamic storage
	Hashes, lists, and sets
	Hashes
	Lists
	Sets
	Sorted sets

	Best practices
	Simple to-do example
	Summary

	Chapter 5: Understanding and Responding to Natural Language

	A brief introduction to natural language
	Fundamentals of NLP
	Tokenizers
	Stemmers
	String distance
	Inflection
	Displaying data in a natural way
	When to use NLP?
	Mentions
	Classifiers
	Using trained classifiers
	Natural language generation
	When should we use natural language generation?
	The uncanny valley
	Summary

	Chapter 6: Webhooks and Slash Commands

	Webhooks
	Incoming webhooks
	Outgoing webhooks

	Slash commands
	In-channel and ephemeral responses
	Using webhooks and slash commands
	Summary

	Chapter 7: Publishing Your App

	The Slack app directory
	Registering your app and obtaining tokens
	Understanding the OAuth process
	Scopes
	Submitting your app to the app directory
	Monetizing your bot

	Summary
	Further reading

	Index

