

Getting Started with
Raspberry Pi Zero

Get started with the smallest, cheapest, and
highest-utility Pi ever—Raspberry Pi Zero

Richard Grimmett

BIRMINGHAM - MUMBAI

Getting Started with Raspberry Pi Zero

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1210316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-946-5

www.packtpub.com

www.packtpub.com

Credits

Author
Richard Grimmett

Reviewer
David Whale

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Tushar Gupta

Content Development Editor
Merint Thomas Mathew

Technical Editor
Saurabh Malhotra

Copy Editors
Kevin McGowan

Sneha Singh

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Disha Haria

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Richard Grimmett has always been fascinated by computers and electronics
since his very first programming project that used Fortran on punch cards. He has
a bachelor's and master's degree in electrical engineering and a PhD in leadership
studies. He also has 26 years of experience in the radar and telecommunications
industries, and even has one of the original brick phones. He now teaches computer
science and electrical engineering at the Brigham Young University, Idaho, where his
office is filled with his numerous robotics projects.

This book is the result of working with the wonderful students at
BYU-Idaho. It also wouldn't be possible without the help of my
wonderful wife, Jeanne.

About the Reviewer

David Whale is a software developer living in Essex, UK. He started coding as
a schoolboy aged 11, inspired by the school science technician to build his own
computer from a kit and quickly progressed to writing machine code programs
because they were "small and fast". These early experiments led to some of his code
being used inside a saleable educational word game when he was only 13.

He has been developing software professionally ever since, mainly writing small and
fast code that goes into electronic products, including automated machinery, electric
cars, mobile phones, energy meters, and wireless doorbells.

These days, he runs his own software consultancy called Thinking Binaries and
spends nearly half of his time helping to design the next wave of the Internet called
The Internet of Things, by connecting electronic devices to it. The rest of the time
he volunteers for The Institution of Engineering and Technology, running training
courses for teachers, designing and running workshops and clubs for school
children, and being busy with his Raspberry Pi, BBC micro:bit and Arduino.

He was the technical editor for the book Adventures in Raspberry Pi and the co-author
of the book Adventures in Minecraft, and is a regular reviewer and editor of technical
books from a number of book publishers.

I was really pleased to be asked to review this great new book of
projects using the Raspberry Pi Zero. The size of the Pi Zero makes
it ideal for building into other products. In this book, Richard
Grimmett takes us on an amazing journey of circuit bending, coding,
and innovating using this tiny computer! But don't stop here; the
projects in this book will give you the skills you need and inspire
you to come up with many new ideas yourself!

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with Raspberry Pi Zero 1

Setting up the Raspberry Pi Zero 2
Powering the board 3
Hooking up a keyboard, mouse, and display 4
Installing the operating system 9
Adding Internet access 14

Accessing your Raspberry Pi Zero from your host PC 17
Summary 30

Chapter 2: Programming Raspberry Pi Zero 31
Powering up Raspberry Pi Zero with Linux 31
Creating, editing, and saving files 37
Creating and running Python programs 39
Basic programming constructs on Raspberry Pi Zero 43

The if statement 43
The while statement 45
Working with functions 46
Libraries/modules in Python 48

Summary 50
Chapter 3: Accessing the GPIO Pins on Raspberry Pi Zero 51

The GPIO capability of Raspberry Pi Zero 51
Simple GPIO digital voltage output 53

Raspberry Pi Zero and LED code 59
Adding a sonar sensor 61

Raspberry Pi Zero and the sonar sensor code 64
Connecting a digital compass to Raspberry Pi Zero 66
Accessing the compass programmatically 70
Summary 75

Table of Contents

[ii]

Chapter 4: Building and Controlling a Simple Wheeled Robot 77
The basic platform 77
Controlling an H-bridge interface to the DC motors 80
Controlling your mobile platform programmatically using
the Raspberry Pi Zero 83
Controlling the speed of your motors with PWM 86
Using a motor controller board to control the DC motors 89
Controlling the vehicle using the Raspberry Pi Zero in Python 92
Planning your path 96
Summary 100

Chapter 5: Building a Robot That Can Walk 101
Robots that can walk 101
How servo motors work 102
Building the quadruped platform 103
Using a servo controller to control the servos 107
Communicating between the servo controller and a PC 110
Connecting the servo controller to the Raspberry Pi Zero 114
Creating a program in Linux to control your quadruped 118
Summary 121

Chapter 6: Adding Voice Recognition and Speech – A Voice
Activated Robot 123

Communication between the Raspberry Pi Zero and the robot 125
Giving your robot voice commands 129
Using eSpeak to allow your robot to respond with an audible voice 137
Using pocketsphinx to accept your voice commands 138
Interpreting commands and initiating actions 144
Summary 147

Chapter 7: Adding Raspberry Pi Zero to an RC Vehicle 149
Configuring and controlling an RC car with Raspberry Pi Zero 150
Controlling the RC car in Python 160
Accessing the RC car remotely 163
Connecting a webcam 166
Summary 167

Table of Contents

[iii]

Chapter 8: Playing Rock, Paper, or Scissors with
Raspberry Pi Zero 169

A robotic hand 170
Moving the robotic hand 172
Connecting the servo controller to the Raspberry Pi Zero 175
Creating a program on Raspberry Pi Zero so that you can
control your hand 178
Installing a USB camera on Raspberry Pi Zero 180
Downloading and installing OpenCV – a fully featured vision library 183
Gesture detection 185
Summary 189

Chapter 9: Adding Raspberry Pi Zero to a Quadcopter 191
Constructing the platform 192
Mission planning software 196
Summary 205

Index 207

[v]

Preface
For many years, robots and other advanced electronic wonders could only be
seen on the television, movies, or in university or military labs. In recent years,
however, the availability of new and inexpensive hardware and also free and
open source software, has provided the opportunity for almost anyone with a
little technical knowledge and imagination to build these technical wonders.
The first wave of projects were fueled by Arduino, an inexpensive and
simple-to-program microcontroller. The next wave was carried further by
the introduction of the Raspberry Pi, an even more capable processor powered
by the Linux operating system.

Now there is an even less expensive, powerful microprocessor: the Raspberry Pi
Zero. This little processor packs a processor powerful enough to run Linux into
a small and even less expensive package. This capability, coupled with some
additional power, inexpensive hardware, and free open source software provides
a platform for projects that range from simple wheeled robots to advanced
flying machines.

What this book covers
Chapter 1, Setting Started with Raspberry Pi Zero, is designed to go through the details
of setting up a useful development environment on Raspberry Pi Zero. The chapter
begins with a discussion of how to connect power and continues through setting up
a full system, configured and ready to be connected to any of the amazing devices
and SW capabilities to develop advanced robotics applications.

Chapter 2, Programming Raspberry Pi Zero, reviews, for those who are already familiar,
basic Linux, editing, and programming techniques that will be useful through the
rest of the book. You'll learn how to interact from the command line, how to create
and edit a file using an editor, and basic Python programming.

Preface

[vi]

Chapter 3, Accessing the GPIO Pins on Raspberry Pi Zero, discusses the GPIO
capabilities of Raspberry Pi Zero by building and controlling some simple
LED circuits.

Chapter 4, Building and Controlling a Simple Wheeled Robot, discusses one of the
amazing things you can do with Raspberry Pi Zero, controlling a simple wheeled
robot. This chapter will show you how to add motor control, so you can build your
very own autonomous mobile robot.

Chapter 5, Building a Robot That Can Walk, tells us about another impressive
robotic project, an autonomous robot that can walk. This is done using servos
whose position can be controlled using Raspberry Pi and some additional
USB-controlled hardware.

Chapter 6, Adding Voice Recognition and Speech – A Voice Activated Robot, tells us about
a voice-activated robot. One of the significant new features of today's computer
system is the ability to input commands and provide output without a screen or
keyboard. A few years ago, the concept of a computer that can talk and listen was
science fiction, but today it is becoming a standard part of new cell phones. This
chapter introduces how Raspberry Pi Zero can both listen to speech and also respond
in kind. This is not as easy as it sounds (pun intended) and you'll be exposed to some
basic functionality, while also understanding some of the key limitations. You'll take
a standard toy and turn it into a responsive robot.

Chapter 7, Adding Raspberry Pi Zero to an RC Vehicle, tells us about another astounding
capability of Raspberry Pi Zero, the ability to add "sight" to you projects. Raspberry
Pi Zero makes this very easy by supporting open source software and readily
available USB webcams. By adding this and a remote control, you can build a remote
control vehicle that can go around corners, into rooms, wherever you'd like to go.

Chapter 8, Playing Rock, Paper, or Scissors with Raspberry Pi Zero, tells us about how we
can use our toolkit to build and control a robotic hand that can see and respond to
the world around it. In this case, you'll program your hand to play rock, paper,
and scissors.

Chapter 9, Adding Raspberry Pi Zero to a Quadcopter, talks about the fact that building
a robot that can walk, talk, or play air hockey is cool, but one that can fly is
the ultimate goal.

Preface

[vii]

What you need for this book
You need a Raspberry Pi Zero. You can refer to the software list along with the code
bundle of the book.

Who this book is for
This book is designed for the beginner. It requires little more than a vivid
imagination and a desire to learn the basics of programming and hardware
configuration.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To install Nmap, type sudo apt-get install nmap. To run Nmap, type sudo
nmap -sp 10.25.155.1/154."

A block of code is set as follows:

a = input("Input value: ")
b = input("Input second value: ")
c = a + b
print c

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

a = input("Input value: ")
b = input("Input second value: ")
c = a + b
print c

Any command-line input or output is written as follows:

cd /home/pi/Desktop

Preface

[viii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking on the Scan selector scans for all the devices connected to the network."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR/7-Zip for Windows
• Zipeg/iZip/UnRarX for Mac
• 7-Zip/PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.
com/sites/default/files/downloads/GettingStartedwithRaspberryPiZero_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/sites/default/files/downloads/GettingStartedwithRaspberryPiZero_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/GettingStartedwithRaspberryPiZero_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/GettingStartedwithRaspberryPiZero_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Raspberry Pi Zero

There has been a major shift in electronics and computer accessibility driven by the
introduction of the Raspberry Pi microcomputer and its variants. With a completely
different price point along with a significantly expanded support community, the
Raspberry Pi has been an unprecedented success in bringing inexpensive computing
to a wide audience. The Raspberry Pi Zero continues with that important approach,
providing unprecedented computer power at an even lower price point.

The Raspberry Pi Zero is particularly useful as it can be paired with inexpensive
hardware and open-source software to do a wide range of different Do-It-Yourself
projects. You'll learn about many of these in this book. You'll learn how to control
DC motors, how to control servos, how to hook up a microphone for speech
recognition, and even how to connect a webcam to view and interpret the
outside world.

The Raspberry Pi Zero can do amazing things, but first you'll need to understand
how to access all of this capability. In this chapter, you'll learn how to:

• Provide power to the board
• Connect a display, keyboard, and mouse
• Load and configure the operating system
• Configure the board for remote access

Getting Started with Raspberry Pi Zero

[2]

Setting up the Raspberry Pi Zero
While the Raspberry Pi Zero is a powerful computer, you'll need some additional
hardware to access this capability. Here are the items that you'll need for this
chapter's projects:

• A Raspberry Pi Zero
• A micro USB cable and power supply to provide power to the board
• A display with an HDMI video input
• A keyboard, a mouse, and a powered USB hub
• A microSD card – with at least 4 GB capacity
• A microSD card writer
• Another computer that is connected to the Internet
• A WLAN USB dongle
• A 40x2 pin connector strip

Before you get started, let's get familiar with the Raspberry Pi Zero. Here is an image
of the hardware:

Chapter 1

[3]

Note that the GPIO pin male headers are not pre-soldered to the board; you'll want
to do that. You can buy these at most online electronics retailers. You should also
become familiar with the various connections on the board. Here, you can see the
Raspberry Pi Zero with the connector soldered and the connections labeled for
your information:

Powering the board
One of the first issues you'll want to consider is how to power the board. To do this,
you need to connect through the USB power connection. There are two choices to
provide power to the Raspberry Pi Zero:

1. Connect the microUSB connector labeled power to a 5V DC source powered
by a USB power supply. This can be either a power supply that can plug
directly into an outlet or power supplied by a powered USB port like those
available on most computers.

Getting Started with Raspberry Pi Zero

[4]

2. Connect the microUSB connector to a battery. The simplest connection is to
batteries that have a USB connector, like those used to charge cellphones.
Here is a image of just such a battery:

In both cases, make sure that the unit can supply enough current. You'll need a
supply that can provide at least 1000 mA at 5 volts. There are two USB charge
connections on this battery which makes it easy to plug the Raspberry Pi Zero into
one and the powered USB hub into the other. Do not plug in the board just yet,
you first need to connect the rest of the hardware and configure the microSD card.
However, you are now ready to connect the rest of the hardware.

Hooking up a keyboard, mouse, and
display
The next step is to connect a keyboard, mouse, and display to the Raspberry Pi Zero.
You may have much of this stuff already but, if you don't, there are some things
to consider before buying additional equipment. Let's start with the keyboard
and mouse.

Chapter 1

[5]

To connect any device to the Raspberry Pi Zero you'll need some sort of adapter
or hub. You can buy a simple hub that goes from the microUSB connector on the
Raspberry Pi Zero to the more common standard connector. You can find these at
most electronics online retailers, and it looks something like this:

However, there will be projects when you will want to connect more than one device
to the Raspberry Pi Zero. For these cases you may want to consider purchasing a
powered USB hub. Before deciding on the hub to connect to your board, you need to
understand the difference between a powered USB hub and one that gets its power
from the USB port itself.

Getting Started with Raspberry Pi Zero

[6]

Almost all USB hubs are not powered, in other words, you don't plug in the USB
hub separately. The reason for this is that almost all of these hubs are hooked up
to computers with very large power supplies and powering USB devices from the
computer is not a problem. This is not the case for your board. The USB port on your
board has very limited power capabilities so if you are going to hook up devices
that require significant power – a WAN adapter or a webcam for instance – you're
going to need a powered USB hub, one that provides power to the devices through
a separate power source. Here is an image of such a device, available at
http://www.amazon.com/ and other online retailers:

Note that there are two connections on this hub. The one to the far right is a power
connection and it will be plugged into a battery or a USB power adapter with a USB
port. The connection to the left is the USB connection, which will be plugged into the
Raspberry Pi. To connect the power USB board to the Raspberry Pi Zero you need a
cable that connects to a microUSB connector. Now, you'll have more connections to
add a mouse and keyboard, webcams, and a USB WLAN device.

Now, you'll also need a display. Fortunately, your Raspberry Pi Zero offers lots of
choices. There are a number of different video standards; here is an image of some of
the most common ones for reference:

http://www.amazon.com/

Chapter 1

[7]

There is a mini HDMI connector on the Raspberry Pi Zero. In order to connect it to
an HDMI monitor you'll need a mini HDMI to standard HDMI adapter or cable.
You can also buy a cable that has a mini HDMI connector on one end and a regular
HDMI connector on the other. Here is an image of the adapter:

To use this connector, simply connect the adapter to your Raspberry Pi Zero, then
the cable with the regular HDMI connections to the adapter and your TV or monitor
that has an HDMI input connector. HDMI monitors are relatively new but if you
have a monitor that has a DVI input, you can buy relatively inexpensive adapters
that provide an interface between DVI and HDMI.

Don't be fooled by adapters that claim that they go from HDMI or DVI
to VGA, or HDMI or DVI to S-video. These are two different kinds of
signals: HDMI and DVI are digital standards, and VGA and S-video
are analog standards. There are adapters that can do this, but they must
contain circuitry and require power and they are significantly more
expensive than any simple adapter.

Getting Started with Raspberry Pi Zero

[8]

You are almost ready to plug in the Raspberry Pi Zero. Connect your HDMI cable
to your monitor and the Raspberry Pi Zero. Connect your USB hub to the Raspberry
Pi Zero and connect your keyboard and mouse to the USB hub. Make sure that you
connect all your devices before you power on the unit. Most operating systems
support hot-swap of devices, which means you are able to connect a device after the
system has been powered but this is a bit shaky. You should always cycle power
when you connect new hardware. Here is a picture of everything connected:

The USB connectors are connected to USB power adapters. Even though your
hardware configuration is complete, you'll still need to complete the next section
to power on the device. So, let's figure out how to install an operating system.

Chapter 1

[9]

Installing the operating system
Now that your hardware is ready, you need to download and image an operating
system to a microSD card. The Raspberry Pi Zero provides a lot of different choices.
You'll stick with Linux, an open-source version of Unix, on your Raspberry Pi
Zero. Linux, unlike Windows, Android, or iOS, is not tightly controlled by a single
company. It is a grassroots effort from a wide community, mostly open-source and,
while it is available for free, it grows and develops a bit more chaotically.

A number of different versions of Linux have emerged, each built on a core set of
similar capabilities referred to as the Linux kernel. These core capabilities are all
based on the Linux specification. However, they are packaged slightly differently,
and developed, supported, and packaged by different organizations. The Raspberry
Pi community has become standardized on Raspbian, a Debian distribution of
Linux for the Raspberry Pi. So, you are going to install and run Raspbian on your
Raspberry Pi Zero.

The newest version of Debian is called Jessie, after the cowgirl in Toy Story®.
This is the naming convention for Debian and you need to download this version
of Raspbian.

You can purchase a card that has Raspbian installed or you can download it onto
your personal computer and then install it on the card. To download a distribution,
you need to decide if you are going to use a Windows computer to download and
create an SD card, a MAC OS X, or a Linux machine. I'll give brief instructions for
Windows and Linux machines here.

For directions on the MAC OS X, go to: http://www.
raspberrypi.org/documentation/installation/
installing-images/mac.md.

Firstly, you need to download an image. This part of the process is similar for both
Windows and Linux. Open a browser window. Go to the Raspberry Pi organization's
website, https://www.raspberrypi.org/ and select the Downloads selection
at the top of the page. This will give you a variety of download choices. Go to the
Raspbian section, and select the .zip file just to the right of the image identifier. You
need the latest version, but not the lite one. This will download an archived file that
has the image for your Raspbian operating system. Note the default username and
password; you'll need them later.

http://www.raspberrypi.org/documentation/installation/installing-images/mac.md
http://www.raspberrypi.org/documentation/installation/installing-images/mac.md
http://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/

Getting Started with Raspberry Pi Zero

[10]

If you're using Windows, you'll need to unzip the file using an archiving program
like 7-Zip available at http://www.7-zip.org/. This will leave you with a file that
has the .img extension, a file that can be imaged onto your card. Next, you need a
program that can write the image to the card. I use Image Writer for Windows.
You can find a link to this program at the top of the download section on the
https://www.raspberrypi.org/ website. Plug your card into the PC, run this
program, and you should see this:

Select the device card and download the image; it should look something like this:

Then, click on the Write button. This will take some time, perhaps as long as 15
minutes but, when it is complete, exit the program and you'll have your microSD
card with the image.

If you are using Linux, you need to un-archive the file and then write it to the card.
You can do all of this with one command. However, you do need to find the /dev
device label for your card. You can do this with the ls -la /dev/sd* command.
If you run this before you plug in your card, you might see something like the
following screenshot:

http://www.7-zip.org/
https://www.raspberrypi.org/

Chapter 1

[11]

After plugging in your card, you might see something like the following screenshot:

Note that your card is at sdb. Now go to the directory in which you downloaded the
archived image file and use the following command:

sudo dd if=2015-11-21-raspbian-jessie.img of=/dev/sdX

The 2015-11-21-raspbian-jessie.img command will be replaced by the image
file that you downloaded and /dev/sdX will be replaced by your card ID, in this
example /dev/sdb. Be careful to specify the correct device as this can overwrite
the data on any of your drives. Also, this may take a few minutes. Once the file is
written, eject the card and you are ready to plug it into the board and apply
the power.

Getting Started with Raspberry Pi Zero

[12]

Make sure that your Raspberry Pi Zero is unplugged and install the SD card into
the slot. Then power the device. After the device boots, you should get the
following screen:

You are up and running!

Note that, if you use a powered USB hub, it might provide enough power
to your Raspberry Pi, however, in some circumstances it might not be able
to provide all the power you need. I strongly suggest you use different
power sources, one for your Raspberry Pi Zero and one for your hub.

You are going to do one more thing to finalize your configuration. To do this you
need to go into the raspi-config application. So, open a terminal window by
clicking the icon in the upper left corner that looks like a small computer screen.

Now, type in sudo raspi-config. You should see this application on your screen:

Chapter 1

[13]

You need to expand the filesystem to take up the entire card. Select 1 Expand
Filesystem, hit the Enter key and you'll see the following screen:

Getting Started with Raspberry Pi Zero

[14]

Hit Enter once again and you'll go back to the main configuration screen. Now, hit
the Tab key until you are positioned over the <Finish> selection and then hit Enter.
Then hit Enter again so that you can reboot your Raspberry Pi Zero.

If you are using a US keyboard, you may need to edit the keyboard file
for your keyboard to use nano effectively. To do this, use the dropdown
menu in the upper left hand corner of the screen, choose Preferences |
Mouse and Keyboard Settings and then select the Keyboard tab. You can
then choose the correct keyboard for your configuration.

Now you are ready to start interacting with the system! You can bring up a terminal
window and start typing commands.

Adding Internet access
The Raspberry Pi Zero does not have a LAN connection. To connect the Raspberry
Pi Zero to the Internet, you have two choices. You can establish a wireless LAN
connection or you can connect by using a USB to LAN adapter if you want to connect
to an actual LAN port. Let's look at both of these possibilities.

If you are going to connect wirelessly, make sure that you have a wireless access
point available. You'll also need a wireless device. The official Raspberry Pi
Foundation markets a device itself, but other brands also work. See http://elinux.
org/RPi_USB_Wi-Fi_Adapters to identify the wireless devices that have been
verified to work with the Raspberry Pi Zero. Here is one that is available at many
online electronics outlets:

http://elinux.org/RPi_USB_Wi-Fi_Adapters
http://elinux.org/RPi_USB_Wi-Fi_Adapters

Chapter 1

[15]

You'll also need to connect a powered USB hub for this process, so that you can
access both the keyboard and mouse, as well as the USB wireless LAN device.
Now, connect the device to the powered hub.

Boot the system and then edit the wpa_supplicant.conf file by typing sudo nano
/etc/wpa_supplicant/wpa_supplicant.conf. You need to change it to look
like this:

Getting Started with Raspberry Pi Zero

[16]

The wpa-ssid and wpa-psk values here must, of course, match what your wireless
access point requires. Reboot and your device should be connected to your wireless
network. You'll know if it is connected by looking in the upper right hand corner of
the screen where you should see the following:

You can now download any additional functionality you'll want to install from
the Internet.

If you want to connect to an actual LAN cabled connection you need a device that goes
from USB to LAN. This site http://elinux.org/RPi_USB_Ethernet_adapters lists a
number of different possibilities. Here is an image of one such device:

http://elinux.org/RPi_USB_Ethernet_adapters

Chapter 1

[17]

Connecting the Raspberry Pi Zero in this way is actually amazingly easy. Simply
plug the USB to LAN adapter into the powered USB hub, connect an active LAN
cable and you should then have Internet access.

Accessing your Raspberry Pi Zero from your
host PC
Once you have established an Internet network connection with your device, you can
access it from your host computer. There are three ways to access your system from
your remote computer:

• The first is through a terminal interface called SSH.
• The second way is by using a program called VNC server. This allows you

to open a graphical user interface remotely which mirrors the graphical user
interface on the Raspberry Pi.

• Finally, you can transfer files through a program called WinSCP, which is
custom-made for this purpose. You can use a program called SCP for Linux.

So, firstly, make sure that your basic system is up and working. Open a terminal
window and check the IP address of your unit. You're going to need this however
you communicate with the system. Do this by using the ifconfig command. It
should produce the following screenshot:

Getting Started with Raspberry Pi Zero

[18]

You need inet addr, which is shown in the third line of the preceding screenshot to
contact your board through the Ethernet. If you are using a wireless device to gain
access to the Internet, your ifconfig will look like this:

The inet addr associated with the wlan0 connection, in this case 10.10.0.31, is the
address you will use to access your Raspberry Pi.

You also need an SSH terminal program running on your remote computer. An
SSH terminal is a Secure Shell (SSH) connection, which simply means that you'll
be able to access your board and give it commands by typing them into your remote
computer. The response from the Raspberry Pi Zero will appear in the remote
computer terminal window.

If you'd like to know more about SSH, visit:
https://www.siteground.com/tutorials/ssh/.

If you are running Microsoft Windows, you can download an alternative application.
My personal favorite is PuTTY. It is free and does a very good job of saving your
configuration so that you don't have to type it in every time. Type putty in a search
engine and you'll soon come to a page that supports a download or you can go to
http://www.putty.org/.

https://www.siteground.com/tutorials/ssh/
http://www.putty.org/

Chapter 1

[19]

Download PuTTY to your Microsoft Windows machine. Then, run putty.exe.
You should see a configuration window which looks something like the
following screenshot:

Type the inet addr from the previous page in the Host Name space and make sure
that the SSH selection is selected. You may want to save this configuration under
Raspberry Pi so that you can reload it each time.

Getting Started with Raspberry Pi Zero

[20]

When you click on Open, the system will try to open a terminal window onto your
Raspberry Pi through the LAN connection. The first time you do this, you will get
a warning about an RSA key as the two computers don't know about each other.
Windows therefore complains that a computer that it doesn't know is about to
be connected in a fairly intimate way. Simply click on OK and you should get a
terminal with a login prompt, like the following screenshot:

Now you can log in and issue commands to your Raspberry Pi Zero. If you'd like
to do this from a Linux machine, the process is even simpler. Bring up a terminal
window and then type ssh pi@xxx.xxx.xxx.xxx where the xxx.xxx.xxx.xxx is
the inet addr of your device. This will then bring you to the login screen of your
Raspberry Pi Zero, which should look similar to the preceding screenshot.

SSH is a really useful tool to communicate with your Raspberry Pi Zero. However,
sometimes you need a graphical look at your system and you don't necessarily
want to connect to a display. You can get this on your remote computer by using
an application called vncserver. You'll need to install a version of this on your
Raspberry Pi Zero by typing sudo apt-get install tightvncserver in a
terminal window on your Raspberry Pi Zero. This is a perfect opportunity to
use SSH, by the way.

Chapter 1

[21]

Tightvncserver is an application that allows you to view your complete Raspberry
Pi Zero remotely. Once you have it installed, you need to start the server by
typing vncserver in a terminal window on the Raspberry Pi Zero. You will then
be prompted for a password, then be prompted to verify the password, and then
asked if you'd like to have a view-only password. Remember the password that you
entered, you'll need it to log in via a VNC Viewer remotely.

You need a VNC Viewer application for your remote computer. On my Windows
system, I use an application called RealVNC. When I start the application, it gives
me the following screenshot:

Enter the VNC Server address, which is the IP address of your Raspberry Pi
Zero, and click on Connect. You will see a pop-up window, as shown in the
following screenshot:

Getting Started with Raspberry Pi Zero

[22]

Type in the password that you just entered while starting vncserver and
you should then get a graphical view of your Raspberry Pi that looks like
the following screenshot:

You can now access all of the capabilities of your system, although they may be
slower if you are doing a graphics-intense data transfer.

There are ways to make vncserver start automatically on boot. I have
not used them; I prefer to type the vncserver command from an
SSH application when I want the application running. This keeps your
running applications to a minimum and, more importantly, presents
fewer security risks. If you want to start yours each time you boot, there
are several places on the Internet that show you how to configure this.
Try the following website: http://www.havetheknowhow.com/
Configure-the-server/Run-VNC-on-boot.html.

http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html
http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html

Chapter 1

[23]

To view this Raspberry Pi desktop from a remote Linux computer, which is running
Ubuntu for example, you can type sudo apt-get install xtightvncviewer,
then start it by using xtightvncviewer 10.25.155.110:1 and supplying the
chosen password.

Linux has viewers with graphical interfaces such as Remmina Remote Desktop
Client (select the VNC-Virtual Network Computing protocol), which might be used
instead of xtightvncviewer. Here is a screenshot of the Remote Desktop Viewer:

Getting Started with Raspberry Pi Zero

[24]

Make sure that vncserver is running on the Raspberry Pi Zero. The easiest way to do
this is to log in using SSH and run vncserver at the prompt. Now, click on Connect
on the Remote Desktop Viewer. Fill in the screen as follows, under the Protocol
selection, choose VNC, and you should see the following screenshot:

Chapter 1

[25]

Now, enter the Host Internet address, making sure that you include a :1 at the end
and then click on Connect. You'll need to enter the vncserver password you set up,
as shown in the following screenshot:

Now you should be able to see the graphical screen of the Raspberry Pi. To access
the Raspberry Pi Zero graphically from a Mac or another Apple device, you can
still use Real VNC Viewer, see https://www.realvnc.com/products/ for
more information.

https://www.realvnc.com/products/

Getting Started with Raspberry Pi Zero

[26]

The final piece of software that I like to use with Windows is a free
application called WinSCP. To download and install this piece of software,
go to https://winscp.net/ and follow the instructions to download and
install. Once installed, run the program. It will open the following dialog box:

Click on New and you will get the following screenshot:

https://winscp.net/

Chapter 1

[27]

Here, you fill in the IP address in the host name tab, pi in the user name tab, and the
password (not the vncserver password) in the password space. Click on Login and
you should see a warning displayed, as shown in the following screenshot:

The host computer, again, doesn't know the remote computer. Click on Yes and the
application will display the following screenshot:

Getting Started with Raspberry Pi Zero

[28]

Now, you can drag and drop files from one system to the other. You can also do
similar things with Linux by using the command line. To transfer a file to the remote
Raspberry Pi, you can use the scp file user@host.domain:path command, where
file is the filename, and user@host.domain:path is the location you want to copy
it to. For example, if you wanted to copy example.py from your Linux system to the
Raspberry Pi Zero, you would type scp example.py pi@10.25.155.176:/home/pi/.
The system will ask you for the remote password which is the login for the Raspberry
Pi Zero. Enter the password and the file will be transferred.

Now that you know how to use ssh, tightvncserver, and scp, you can access your
Raspberry Pi remotely without having a display, keyboard, or mouse connected to it!
If you are connecting via a WLAN connection, your system will now look like this:

You only need to connect the power and the LAN, either with a cable or through
wireless LAN. If you need to issue simple commands, connect through SSH. If you
need a more complete set of graphical functionality, you can access this through
vncserver. Finally, if you want to transfer files back and forth, you can use WinSCP
from a Windows computer or scp from a Linux computer. Now you have the toolkit
to build your first functionality.

One of the challenges of accessing the system remotely is that you need to know
the IP address of your board. If you have the board connected to a keyboard and
display, you can always just run the ifconfig command to get this information.
However, you're going to use the board in applications in which you don't have this
information. There is a way to discover this by using an IP scanner application. There
are several available for free; on Windows, I use an application called Advanced
IP Scanner, available at www.advanced-ip-scanner.com/. When you start the
program, it looks like the following screenshot:

www.advanced-ip-scanner.com/

Chapter 1

[29]

Clicking on the Scan selector scans for all the devices connected to the network. You
can also do this in Linux; one application for IP scanning in Linux is called Nmap. To
install Nmap, type sudo apt-get install nmap. To run Nmap, type sudo nmap
-sp 10.25.155.1/154 and the scanner will scan the addresses from 10.25.155.1 to
10.25.155.154.

For more information on Nmap, see: :http://www.linux.com/learn/
tutorials/290879-beginners-guide-to-nmap.

These scanners let you know which addresses are being used and this should allow
you to see your Raspberry Pi address without typing ipconfig.

http://www.linux.com/learn/tutorials/290879-beginners-guide-to-nmap
http://www.linux.com/learn/tutorials/290879-beginners-guide-to-nmap

Getting Started with Raspberry Pi Zero

[30]

Your system has lots of capabilities. Feel free to play around with the system—try
to get an understanding of what is already there and what you'll need to add from a
software perspective. Remember, there is limited power on your USB port, so make
sure that you are familiar with the power needs of accessories plugged into your
Raspberry Pi. You may very well need to use a powered USB hub for many projects.

Summary
Congratulations! You've completed the first stage of your journey. You have your
Raspberry Pi Zero up and working. No gathering dust in the bin for this piece of
hardware. It is now ready to start connecting to all sorts of interesting devices, in all
sorts of interesting ways. You have, by now, installed a Raspbian operating system,
learned how to connect all the appropriate peripherals, and even mastered how to
access the system remotely so that the only connections you need are a power supply
cable and a LAN cable.

Now, you are ready to start commanding your Raspberry Pi Zero to do something.
The next chapter will introduce you to the Linux operating system and the Emacs
text editor. It will also show you some basic programming concepts in both the
Python and C/C++ programming languages. Then, you'll be ready to add open
source software to inexpensive hardware and start building your robotics projects.

[31]

Programming Raspberry Pi
Zero

Now that your system is up and running, your Raspberry Pi Zero is ready to do
something. This will require you to either create your own programs or edit someone
else's programs. In this chapter, you'll learn how to edit a file to create a program
that can run on Raspberry Pi Zero.

In this chapter, we will cover the following topics:

• Basic Linux commands and navigating the filesystem on Raspberry Pi Zero
• Creating, editing, and saving files on Raspberry Pi Zero
• Creating and running Python programs on Raspberry Pi Zero
• Some of the basic programming constructs in Python on Raspberry Pi Zero

You can create and run the programs discussed in this chapter by connecting a
keyboard, a mouse, and a monitor to Raspberry Pi Zero, or remotely logging in
using vncserver or SSH.

Powering up Raspberry Pi Zero with
Linux
After completing the tasks discussed in Chapter 1, Getting Started with Raspberry Pi
Zero, you'll have a working Raspberry Pi Zero that is running a version of Linux called
Raspbian. So, power up your Raspberry Pi Zero and log in using a valid username and
password. If you are going to log in remotely through SSH or vncserver, go ahead and
establish the connection now. First, you'll take a quick tour of Linux. This will not be
extensive, but you will just walk through some of the basic commands.

Programming Raspberry Pi Zero

[32]

Once you have logged in, open up a terminal window. If you are logging in using
a keyboard, mouse, and monitor, or using vncserver, you'll find the terminal by
selecting the Terminal application on icon set selection at the top of the screen,
as shown in the following screenshot:

If you are using SSH, you will already be in the terminal emulator program. Either
way, the terminal should look something similar to the following screenshot:

Chapter 2

[33]

Your cursor is at the Command Prompt. Unlike Microsoft Windows or Mac's OS,
with Linux, most of our work will be done by actually typing commands in the
command line. So, let's try a few commands. When you type ls, you should be
able to see the result similar to the following screenshot:

In Linux, the ls command lists all the files and directories in our current directory.
You can tell the different file types and directories apart because they are normally
in different colors. You can also use ls –l to see more information about the files.

Programming Raspberry Pi Zero

[34]

You can move around the directory structure by issuing the cd (change directory)
command. For example, if you want to see what is in the Desktop directory, type cd
Desktop. If you issue the ls command now, you should see something similar to the
following screenshot:

This directory is empty; it doesn't have any files. The cd command changes the
directory. You could have typed cd /home/pi/Desktop and received exactly
the same result; this is because you were in the /home/pi directory, which is
the directory where you always start when you first log in to the system.

Chapter 2

[35]

If you ever want to see which directory you are in, simply type pwd, which stands for
present working directory. If you do that, you will get the result, which is similar to
the following screenshot:

The result of running the pwd command is /home/pi/Desktop. Now, you can use two
different shortcuts to navigate back to the default directory. The first is to type cd ..
on the terminal; this will take you to the directory just above the current directory in
the hierarchy. Then type pwd; you should see the following screenshot as a result:

Programming Raspberry Pi Zero

[36]

The other way to get back to the home directory is by typing cd ~; this will always
return you to your home directory. You can also type cd to return to your home
directory. If you were to do this from the Desktop directory and then type pwd,
you would see the following screenshot as the result:

You can go to a specific directory using its entire pathname. In this case, if you want
to go to the /home/pi/Desktop directory from anywhere in the filesystem, simply
type cd /home/pi/Desktop.

There are a number of other Linux commands that you might find useful as you
program. The following is a table with some of the most useful commands:

Linux commands What it does

ls This command lists all the files and directories in the
current directory by just their names.

rm filename This command deletes the file specified by filename.

mv filename1
filename2

This command renames filename1 to filename2.

Chapter 2

[37]

Linux commands What it does

cp filename1
filename2

This command copies filename1 to filename2.

mkdir
directoryname

This command creates a directory with the name
specified by directoryname; this will be made in the
current directory unless specified otherwise.

clear This command clears the current terminal window.

sudo If you type the sudo command at the beginning of any
command, it will execute that command as the super
user. This may be required if the command or program
you are trying to execute needs the permission of the
super user. If, at any point, you type a command or the
name of the program you want to run and the result
seems to suggest that the command does not exist or that
permission is denied, try doing it again with sudo at the
beginning.

Now, you can play around with the commands and look at your system and the
files that are available to you. But, be careful! Linux is not like Windows; the default
behavior is to not warn you if you try to delete or replace a file.

Creating, editing, and saving files
Now that you can log in and move easily between directories and see your files,
you'll want to be able to edit those files. To do this, you'll need a program that allows
you to edit the characters in a file. If you are used to working on Microsoft Windows,
you have probably used programs such as Microsoft Notepad, WordPad, or Word
to do this. These programs are not available in Linux. There are several other choices
for editors, all of which are free. In this chapter, you will use an editing program
called Emacs. Other possibilities are programs such as nano, vi, vim, and gedit.
Programmers have strong feelings about which editor to use, so if you already
have a favorite, you can skip this section.

If you want to use nano as an editor, it is already available on
the Raspbian distribution. For more information on nano, see
http://www.nano-editor.org/.

http://www.nano-editor.org/

Programming Raspberry Pi Zero

[38]

If you want to use Emacs, download and install it by typing sudo apt-get install
emacs. Once installed, you can run Emacs simply by typing emacs filename, where
filename is the name of the file you want to edit. If the file does not exist, Emacs
will create it. The following screenshot shows what you will see if you type emacs
example.py on the prompt:

Note that, unlike Windows, Linux doesn't automatically assign file extensions; it
is up to you to specify the kind of file you want to create. The Emacs editor also
indicates, in the lower-left corner of the screen, that you have opened a new file.
Now, if you are using Emacs in the Raspbian GUI interface, either because you have
a monitor, keyboard, and mouse hooked up or because you are running vncserver,
you can use the mouse in much the same way as you do in Microsoft Word.

However, if you are running Emacs from SSH, you won't have the mouse available.
So you'll need to navigate the file using the cursor keys. You'll also have to use some
keystroke commands to save your file, as well as accomplish a number of other tasks
that you would normally use the mouse to select. For example, when you are ready
to save the file, you must press Ctrl + X and Ctrl + S and that will save the file under
the current filename. When you want to quit Emacs, you must press Ctrl + X and Ctrl
+ C. This will stop Emacs and return you to the Command Prompt.

Chapter 2

[39]

The following are some Emacs keystroke commands that you might find useful:

Emacs commands What it does

Ctrl + X and Ctrl + S Save: This command saves the current file.

Ctrl + X and Ctrl + C Quit: This command makes you exit Emacs and return
to the command prompt.

Ctrl + K Kill: This command erases the current line.

Ctrl + _ Undo: This command undoes the last action.

Left-click on the text
you wish to copy, then
place the cursor cursor
at the place you want
to paste then right-click

Cut and paste: If you select the text you want to paste by
clicking the mouse, move the cursor to where you want
to paste the code and then right-click on it; the code will
be pasted in that location.

Now that you have the capability to edit files, you'll use this capability to create
programs in the next section.

Creating and running Python programs
Now that you are ready to begin programming, you'll need to choose a language.
There are many available, such as C, C++, Java, Python, Perl, and a great deal of
other possibilities. I'm going to initially introduce you to Python for two reasons:
it is a simple language that is intuitive and very easy to use, and it uses a lot of the
open source functionality of the robotics world. We'll also cover a bit of C/C++ in
this chapter, as some features are only available in C/C++. However, it makes sense
to start with Python. To work through the examples in this section, you'll need a
version of Python installed. Fortunately, the basic Raspbian system has one already,
so you are ready to begin.

We are only going to cover some of the very basic concepts here. If you are new
to programming, there are a number of different websites that provide interactive
tutorials. If you'd like to practice some of the basic programming concepts
in Python using these tutorials, visit https://www.codeacademy.com or
http://www.learnpython.org/ or https://docs.python.org and give it a try.

https://www.codeacademy.com
http://www.learnpython.org/
https://docs.python.org

Programming Raspberry Pi Zero

[40]

In this section, we'll cover how to create and run a Python file. It turns out that
Python can be used interactively, so you can type in the commands one at a time.
Using it interactively is extremely helpful when you are getting acquainted with the
language features and modules. But you want to use Python to create programs,
so you are going to type in your commands using Emacs and then run them in the
command line by invoking Python. Let's get started.

Open an example Python file by typing emacs example.py. Now, let's put some
code in the file. Start with the code shown in the following screenshot:

Let's go through the code to see what is happening. The code lines are as follows:

• a = input("Input value: "): One of the basic purposes of a program is
to get input from the user; input allows us to do that. The data will be input
by the user and stored in a. The prompt Input value: will be shown to
the user.

• b = input("Input second value: "): This data will also be input by the
user and stored in b. The prompt Input second value: will be shown to
the user.

• c = a + b: This is an example of something you can do with the data; in this
example, you can add a and b.

• print c: Another basic purpose of our program is to print out results.
The print command prints out the value of c.

This code is written using Python 2. If you are using Python 3, you
will need to change your print to print(c). For other changes
that might be required, go to http://learntocodewith.me/
programming/python/python-2-vs-python-3/.

http://learntocodewith.me/programming/python/python-2-vs-python-3/
http://learntocodewith.me/programming/python/python-2-vs-python-3/

Chapter 2

[41]

Once you have created your program, save it (using Ctrl + X and Ctrl + S) and
quit Emacs (using Ctrl + X and Ctrl + C). Now, from the command line, run your
program by typing python example.py. The result you see should be similar to the
following screenshot:

You can also run the program from the command line without typing python
example.py by adding the #!/usr/bin/python line to the program. Then the
program looks similar to the following screenshot:

Adding #!/usr/bin/python as the first line, simply makes this file available for us
to execute from the command line. Once you have saved the file and exited Emacs,
type chmod +x example.py. This will change the file's execution permissions, so the
computer will now accept and execute it.

Programming Raspberry Pi Zero

[42]

You should be able to simply type ./example.py and see the program run, as shown
in the following screenshot:

Note that if you simply type example.py, the system will not find the executable file.
Here, the file has not been registered with the system, so you have to give the system
a path to it. In this case, ./ is the current directory.

Downloading the example code
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address
and password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download

the code files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR/7-Zip for Windows
• Zipeg/iZip/UnRarX for Mac
• 7-Zip/PeaZip for Linux

Chapter 2

[43]

Basic programming constructs on
Raspberry Pi Zero
Now that you know how to enter and run a simple Python program on Raspberry
Pi Zero, let's look at some more complex programming tools. Specifically, we'll
cover what to do when we want to determine the instructions to execute and how
to loop our code to do that more than once. I'll give a brief introduction on how to
use libraries in the Python version 2.7 code and how to organize statements into
functions. Finally, we'll very briefly cover object-oriented code organization.

Indentation in Python is very important; it will specify which
group of statements is associated with a given loop or decision
set, so watch your indentation carefully.

The if statement
As you have seen in previous examples, your programs normally start by executing
the first line of code and then continue with the following lines until the program
runs out of code. But, what if you want to decide between two different courses of
action? We can do this in Python using an if statement. The following screenshot
shows some example code:

Programming Raspberry Pi Zero

[44]

The following are the details of the code shown in the previous screenshot:

• #!/usr/bin/python: This is included so that you can make your
program executable.

• a = input("Input value: "): The data will be input by the user and
stored in a. b = input("Input second value: "): This data will also be
input by the user and stored in b.

• if a > b:: This is an if statement. The expression evaluated in this case is
a > b. If it is True, the program will execute the next one or more statements
that are indented; in this case, c = a - b. If not, it will skip that statement.

• else::The else statement is an optional part of the command. If the
expression in the if statement is evaluated as False, the indented statements
after the else: statement will be executed; in this case, c = b - a.

• print c: Another basic purpose of our program is to print out results.
The print command prints out the value of c.

You can run the previous program a couple of times, checking both the True and
False possibilities of the if expression, as shown in the following screenshot:

Chapter 2

[45]

The while statement
Another useful construct is the while construct; it allows us to execute a set of
statements over and over again until a specific condition has been met. The
following screenshot shows a set of code that uses this construct:

The following are the details of the code shown in the previous screenshot:

• #!/usr/bin/python: This is included so you can make your
program executable.

• a = 0: This line sets the value of variable a to 0. We'll need this only to make
sure that we execute the loop at least once.

• b = 1: This line sets the value of the variable b to 1. We'll need this only to
make sure that we execute the loop at least once.

• while a != b:: The expression a != b (in this case, != means not equal
to) is verified. If it is True, the indented statements are executed. When the
statement is evaluated as False, the program jumps to the statements (none
in this example) after the indented section.

• a = input("Input value: "): The data will be input by the user and
stored in a.

• b = input("Input second value: "): This data will also be input by the
user and stored in b.

• c = a + b: The variable c is loaded with the sum of a and b.
• print c: The print command prints out the value of c.

Programming Raspberry Pi Zero

[46]

Now you can run the program. Note that when you enter the same value for a and b,
the program stops, as shown in the following screenshot:

Working with functions
The next concept that we need to cover is how to put a set of statements into a
function. We use functions to organize code and group sets of statements together
when it makes sense to organize them in the same location. For example, if we have
a specific calculation that we might want to perform many times, instead of copying
the set of statements every time we want to perform it, we group them into a
function. I'll use a fairly simple example here, but if the calculation takes a significant
number of programming statements, you can see how that would make our code
significantly easier to maintain, as we don't need to duplicate our code over and
over. It can also make our code easier to read. The following screenshot shows
the code:

Chapter 2

[47]

The following is the explanation of the code from our previous example:

• #!/usr/bin/python: This is included so you can make your
program executable.

• def sum(a, b):: This line defines a function named sum. The sum function
takes a and b as arguments.

• c = a + b: Whenever this function is called, it will add the values in the
variable a to the values in variable b.

• return c: When the function is executed, it will return variable c to the
calling expression.

Programming Raspberry Pi Zero

[48]

• d = input("Input value: "): This data will also be input by the user and
will be stored in d. The prompt Input second value: will be shown to
the user.

• e = input("Input second value: "):This data will also be input by the
user and stored in e. The prompt Input second value: will be shown to
the user.

• f = sum(d, e): The function sum is called. The program then goes to the
sum function and executes it. The value in variable d is copied to the variable
a and the value in the variable e is copied to the variable b. The value is
returned from the function and then stored in variable f.

• print f: The print command prints out the value of f.

The following screenshot is the result received when you run the code:

Libraries/modules in Python
The next topic we need to cover is how to add functionality to our programs using
libraries/modules. Libraries or modules, as they are sometimes called in Python,
include a functionality that someone else has created and that you want to add to
your code. As long as the functionality exists and your system knows about it, you
can include the library in the code.

Chapter 2

[49]

So, let's modify our code again by adding the library, as shown in the
following screenshot:

The following is a line-by-line description of the code:

• #!/usr/bin/python: This is included so that you can make your
program executable.

• import time: This includes the time library. The time library includes a
function that allows you to pause for a specified number of seconds.

• d = input("Input value: "): This data will be input by the user and will
be stored in d. The prompt Input second value: will be shown to the user.

• time.sleep(2): This line calls the sleep function in the time library, which
will cause a 2 second delay.

• e = input("Input second value: "): This data will also be input by
the user and will be stored in b. The prompt Input second value: will be
shown to the user.

• f = d + e: The f variable is loaded with the value d + e.
• print f: The print command prints out the value of f.

Programming Raspberry Pi Zero

[50]

The following screenshot shows the result after running the previous example code:

Of course, this looks very similar to other results. But you will notice a pause
between you entering the first value and the appearance of the second value.

Summary
In this chapter, you've learned how to interact with the Raspbian operating system
using the command line and how to create and edit files using Emacs. You have also
been exposed to both the Python and C programming languages. If this is your first
experience with programming, don't be surprised if you are still very uneasy with
programming in general, and if and while statements in particular. You probably
felt just as uncomfortable during your first introduction to the English language,
although you may not remember it.

It is always a bit difficult to try new things. However, I will try to give you explicit
instructions on what to type so that you can be successful. There is one major
challenge in working with computers. They always do exactly what you tell them to
do and not necessarily what you want them to. So if you encounter problems, check
several times to make sure that your code matches the example exactly. Now, on to
some actual coding!

In the next chapter, you'll start writing code that will enable you to create amazing
projects. You'll start by providing your system with the ability to speak and also
listen to your commands.

[51]

Accessing the GPIO Pins on
Raspberry Pi Zero

Now that you are familiar with Raspberry Pi Zero and also how to create, edit, and
upload a program, this chapter will turn your focus to the hardware. You'll get the
chance to learn how to connect and access, from the software, the capabilities of the
Raspberry Pi GPIO pins.

In this chapter you'll learn:

• All about Raspberry Pi Zero's GPIO pins and what they can and can't do
• A very basic circuit and very simple programming examples of how to

interface Raspberry Pi Zero's GPIO to produce a digital control signal
• A more complex example of how to interface Raspberry Pi Zero's GPIO

with a sonar sensor
• An example of how to connect an I2C device to Raspberry Pi Zero

The GPIO capability of Raspberry Pi Zero
Raspberry Pi Zero was built to access the outside world. Much of this access
is available through the GPIO pins. Let's start by detailing what the GPIO pins
are and what they can do. Raspberry Pi Zero has 40 GPIO pins.

Accessing the GPIO Pins on Raspberry Pi Zero

[52]

Here is a closeup of the 40 pins:

Here is a listing of the pins and their connection to the Raspberry Pi Zero:

Chapter 3

[53]

The purpose of some of these pins is very clear. Pins 1 and 17 are available to supply
3.3 volts, pins 2 and 4 supply 5 volts, and pins 9, 25, 39, 6, 14, 20, 30, and 34 are
all connected to ground on Raspberry Pi Zero. The rest of the pins have various
capabilities, which you'll learn in this chapter. Let's start with the pins that can be
used to supply a simple DC signal to the outside world.

Simple GPIO digital voltage output
Perhaps the simplest connection that you can make to the GPIO on Raspberry Pi is
to connect to a pin so that you can send a simple digital output voltage. To do this,
you will use the GPIO IO pins to light up an LED. To be successful, you'll need four
pieces of hardware: a solder-less breadboard, some jumper wires, an LED, and a
resistor. Here are more details on these parts:

1. A breadboard is a simple device that lets you easily connect your various
electronic parts. They come in various sizes, shapes, and colors. Here is a
picture of such a breadboard:

They are available at many online outlets and hobby shops.

Accessing the GPIO Pins on Raspberry Pi Zero

[54]

2. Jumper wires are designed to connect your various electronics parts. These
are specified by female or male ends, depending on the type of connection.
Here is a picture of a male to female jumper wire, with the ends labeled:

For these projects, you'll want some female to male jumper cables and some
female to female jumper cables.

3. A Light Emitting Diode (LED) is a small component with two leads that
light up when a voltage is applied. They come in a wide variety of colors. If
you want to buy them online, search for a 3 mm LED. They come in various
colors. You can also get them at most electronics shops. Here is one:

Chapter 3

[55]

4. You'll also need a resistor to limit the current supplied to the LED. A 220-
ohm resistor would be the right size. Again, you can get them online or at
most electronics shops. Here is an image of a set of such resistors:

If you get two each of LED and resistor, you can exercise several of the GPIO IO
pins. Now that you have all the bits and bobs, let's build your first hardware project.
Before you plug anything in, lets look at the breadboard for a moment so that you
can understand how you are going to use it to make connections. You'll be plugging
your wires into the holes on the breadboard. The holes on the breadboard are
connected in a unique way to make the connections you desire.

In the middle of the board, the holes are connected across the board. So if you plug
in the wire with another wire in the hole right next to it, these two wires will be
connected, like this:

Accessing the GPIO Pins on Raspberry Pi Zero

[56]

The two rows on each side of the board are generally designed to provide power, so
they are connected up and down. Connect pin 2, 3 volts, to the + connection and pin
6, GND, to the + and – rows of the breadboard, as shown:

Now you can place the electronic parts on the breadboard. Place the LEDs so that
one wire is on one side of the middle split of the breadboard. The direction on the
LED is important; make sure that the longer of the two wires is on the left-hand side
of the hole.

Now place the resistors on the holes on one side of the LED, with the other lead
connected to the GND row of the breadboard. The direction of the resistor does not
make any difference. Your circuit should look similar to the following image:

Chapter 3

[57]

Now you'll use the jumper wires to connect to Raspberry Pi Zero's GPIO pins.
You'll connect to pin 13 (GPIO 27) and pin 15 (GPIO 22), as shown:

Accessing the GPIO Pins on Raspberry Pi Zero

[58]

Choosing the right pins is important, as not all of the pins are available to output
a GPIO voltage. Here is another view of the GPIO pins, labeled with some of the
dedicated functions that have been assigned to them:

You'll learn more about the dedicated functions in this chapter and throughout the
book. Now that the hardware is configured correctly, you'll need to add code to
drive the LEDs.

Chapter 3

[59]

Raspberry Pi Zero and LED code
To create the code, you'll now want to boot up, log in, and open a terminal window
on Raspberry Pi Zero. You'll use Python to create a simple program to turn on and
off the LEDs. Here is the code:

Now enter the program. Lets go through the program line by line:

• #!/usr/bin/python: This line lets you run this program without having to
type python before the filename. You'll learn how to do this at the end of
these instructions.

• import RPi.GPIO as io: This lets you import the RPi.GPIO library, which
will allow you to control the GPIO pins.

• import time: The time library provides several time-based functions. In this
case, you'll use it to pause the program for a few seconds.

• io.setmode(io.BCM): This sets the specification mode of the GPIO
pins to Broadcom SOC channel number (BCM). This means that you will
specify the GPIO numbers of the pins you want to control, instead of the
actual physical pin numbers.

Accessing the GPIO Pins on Raspberry Pi Zero

[60]

• led1 = 27: This assigns the value 27 to the led1 variable.
• led2 = 22: This assigns the value 22 to the led2 variable.
• io.setup(led1, io.OUT): This sets the GPIO pin 27 to an output control.
• io.setup(led2, io.OUT): This sets the GPIO pin 22 to an output control.
• while 1:: This puts you in a repeat-forever loop. To stop the program

you'll want to press Ctrl + C.
• io.output(led1, True): This will output a 3.3 volt signal on led1

(this is GPIO 27).
• io.output(led2, True): This will output a 3.3 volt signal on led1

(this is GPIO 22).
• time.sleep(1): This will pause a program for one second.
• io.output(led1, False): This will output 0 volts on led1

(this is GPIO 27).
• io.output(led2, False): This will output 0 volts on led2

(this is GPIO 22).
• time.sleep(1): This pauses a program for one second.

Save the program under the name led.py. Now run the program by typing python
led.py. You should see the two LEDs flash at one second intervals, as shown:

You've just completed your first hardware project with Raspberry Pi Zero!

Chapter 3

[61]

Adding a sonar sensor
The basic circuit you just built is a wonderful start. Now you'll interface a more
complex device, a sonar sensor, with Raspberry Pi Zero. Here is a picture of the
sonar sensor that you'll add:

The device is an HC-SR04 and they are available at most online electronics retailers.
Now let's connect the device to Raspberry Pi Zero. In order to do this, first let's look
at the layout of the GPIO pins on Raspberry Pi Zero:

Accessing the GPIO Pins on Raspberry Pi Zero

[62]

You'll need to connect to the 5 volt connection of the Raspberry Pi Zero, pin 2. You
also need to connect to the GND, which is pin 6 on Raspberry Pi. Pin 16 (GPIO 23) is
used as an output trigger pin and pin 18 (GPIO 24) as an input to time the echo from
the sonar sensor.

Don't connect 5 volts as an input to any of the GPIO pins as this
might cause damage.

Now that you know the pins you have to connect to, you'll connect the sonar
sensor. However, there is a problem, as you can't connect the 5-volt return from the
sonar sensor directly to the Raspberry Pi GPIO pins; they want a maximum of 3.3
volts as input. You need to build a voltage divider that will reduce the 5 volts to
3.3 volts. This can be done with two resistors, which are connected as shown in the
following diagram:

For more information on how the voltage divider works in this
configuration, refer to http://www.modmypi.com/blog/hc-
sr04-ultrasonic-range-sensor-on-the-raspberry-pi.

http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

Chapter 3

[63]

The combination of these two resistors will reduce the voltage to the desired levels.
Here is the circuit, as shown on the breadboard:

Finally, connect the sensor to the Raspberry Pi Zero, as shown:

Accessing the GPIO Pins on Raspberry Pi Zero

[64]

Now that the device is connected, you'll need a bit of code to read in the value, make
sure it is settled (it produces a stable measurement), and then convert it to distance.

Raspberry Pi Zero and the sonar sensor code
Here is Python code to communicate with the sonar sensor:

Here is an explanation of the code:

• #!/usr/bin/python: This line lets you run this program without having to
type python before the filename. You'll learn how to do this at the end of
these instructions.

Chapter 3

[65]

• import RPi.GPIO as io: This lets you import the RPi library, which will
allow you to control the GPIO pins.

• import time: The time library provides several time-based functions. In this
case, you'll use it to pause the program for a known amount of time and also
measure a certain time delay.

• io.setmode(io.BCM): This sets the specification mode of the GPIO pins
to Broadcom SOC channel number (BCM). This means you will specify the
GPIO numbers of the pins you want to control, instead of the actual physical
pin values.

• trig = 23: This assigns the value 23 to the trig variable.
• echo = 24: This assigns the value 24 to the echo variable.
• io.setup(trig, io.OUT): This sets the GPIO pin 23 to an output.
• io.setup(echo, io.IN): This sets the GPIO pin 24 to an input.
• io.setup(trig, False): This will output a zero to the trig line, pin 23.
• time.sleep(1): This command will cause the program to pause for

one second.
• io.output(trig, True): This will output a one, 5 volts, to the trig line,

pin 23.
• time.sleep(.00001): This will cause the program to wait approximately

10 microseconds.
• io.output(trig, False): This will output a zero to the trig line, pin 23.
• while io.input(echo) == 0:: While the input to pin 24 is zero.
• start = time.time(): Reset the start time continuously. When pin 24

goes high, start will hold the latest time that the value of pin 24 was low.
• while io.input(echo) == 1:: Do the following set of commands while the

input pin 24 is 1.
• end = time.time(): Resets the end time continuously. When pin 24

goes low, end will hold the latest time that the value of pin 24 was high.
• duration = end – start: Duration will now hold the time distance

between the end and start time.
• distance = duration * 17150: Distance converts the duration to a

distance value.
• distance = round(distance, 2): Round the distance to two

decimal places.
• print "Distance: ", distance, " cm": Print out the distance.
• io.cleanup(): Reset the interface.

Accessing the GPIO Pins on Raspberry Pi Zero

[66]

Now you should save and run the program and get a result, as shown in the
following screenshot:

Now you can sense the distance with Raspberry Pi Zero!

Connecting a digital compass to
Raspberry Pi Zero
Now you've created some pretty basic connections to Raspberry Pi Zero, turning
lines on and off and sensing a high or low signal. Now let's explore one of the other
interfaces available on Raspberry Pi Zero, the I2C interface. To do this, you'll connect
a digital compass with this sort of interface.

For more on the I2C interface, see http://www.robot-
electronics.co.uk/i2c-tutorial.

There are several chips that provide digital compass capability; one of the most
common is the HMC5883L, a 3-axis digital compass chip. This chip is packaged in a
module by several companies but almost all of them result in a similar interface.

http://www.robot-electronics.co.uk/i2c-tutorial
http://www.robot-electronics.co.uk/i2c-tutorial

Chapter 3

[67]

Here is an image of the GY-271 HMC5883L, a triple-axis compass magnetometer
sensor module available with a number of online retailers:

This type of digital compass uses magnetic sensors to measure the earth's magnetic
field. The output of these sensors is then made accessible to the outside world
through a set of registers that allow the user to set things, such as the sample rate
and continuous or single sampling. The X, Y, and Z directions are the output using
registers as well.

This chip communicates with Raspberry Pi Zero using the Inter IC (I2C) bus. There
are three serial busses available on Raspberry Pi's GPIO interfaces. The first is a
standard Universal Asynchronous Receiver/Transmitter (UART) interface. The
UART interface uses one pin for the RX, or receive signal, and one pin for the TX, or
transmit signal. The UART takes bytes of data and transmits the individual bits in a
sequential order. At the destination, a second UART reassembles the bits into bytes.
This interface is limited to communicating with a single external device. For more
information on the UART interface and how it works, go to https://www.freebsd.
org/doc/en/articles/serial-uart/.

The second interface that is available is the I2C interface. The I2C interface is similar
to the UART interface; it also communicates using two lines, in this case a data-line
and a clock-line. However, it is a bit more complex, as it allows communication
between one master and many slave devices. It does this by addressing the device
the master device wants to communicate with. For more information on the I2C
interface, see http://www.robot-electronics.co.uk/i2c-tutorial.

https://www.freebsd.org/doc/en/articles/serial-uart/
https://www.freebsd.org/doc/en/articles/serial-uart/
http://www.robot-electronics.co.uk/i2c-tutorial

Accessing the GPIO Pins on Raspberry Pi Zero

[68]

The final interface that is available is the Serial Peripheral Interface (SPI) interface.
As with the I2C interface, the SPI interface allows for communication between a
master device and more than one slave device. However, each slave is selected using
a different select data line. SPI masters communicate with slaves using the serial
clock (SCK), Master Out Slave In (MOSI), Master In Slave Out (MISO), and Slave
Select (SS) lines. The SCK, MOSI, and MISO signals can be shared by slaves, while
each slave has a unique SS line. For more information on the SPI interface,
see http://www.corelis.com/education/SPI_Tutorial.htm.

Since the device you are going to use is an I2C device, at the back of the compass
module will be three connections, one for power (VCC), one for ground (GND),
one for the clock (SCL), and one for data (SDA). The connections are labeled as
shown in the following image:

http://www.corelis.com/education/SPI_Tutorial.htm

Chapter 3

[69]

To connect the device, you need to connect the I2C interface pins on Raspberry Pi
Zero. Here is the detail of the GPIO pins:

You'll connect the device to pins 1, 3, 5, 7, and 9. For these connections, you'll want
female-to-female jumper wires:

1. Connect the VCC pin on the module to Pin 1 3.3 V on Raspberry Pi Zero and
GND to Pin 9 GND.

Accessing the GPIO Pins on Raspberry Pi Zero

[70]

2. Then connect SCL on the module to Pin 5 GPIO3 and SDA to Pin 3 GPIO2
on the Raspberry Pi Zero. Note that you will not connect the Data Ready
(DRDY) pin on the compass; this is an optional connection for the device.
Here are the connections:

Now, you are ready to communicate with the device.

Accessing the compass
programmatically
Now that the device is connected, you'll need to configure access via the software.
Here are the steps:

1. In order to access the compass capability, you'll need to enable the I2C library
on Raspberry Pi Zero. To enable this bus, run sudo raspi-config and select
9 Advanced Options, as follows:

Chapter 3

[71]

2. Then go to the A7 I2C selection and enable the I2C, as shown in the
following screenshot:

Accessing the GPIO Pins on Raspberry Pi Zero

[72]

3. Select Yes to enable the I2C interface, as shown in the following screenshot:

4. Select OK on the next screen, then Yes on the screen that asks whether you
want the I2C kernel module loaded by default, as shown:

5. Select OK to return to the main selection, then exit and reboot your
Raspberry Pi Zero.

Chapter 3

[73]

Now you can sense whether the device is connected. Install the I2C toolkit by
typing sudo apt-get install i2c-tools. You can see whether I2C is enabled
by typing sudo i2cdetect -y 1 and then you should see something similar to
the following screenshot:

You can see the device at 1e. Now you can communicate with your digital compass.
Here are the steps:

1. You'll need to create a Python program. Before you create your Python code,
you need to install the SMBus capability to access I2C. This can be done by
typing sudo apt-get install python-smbus.

Accessing the GPIO Pins on Raspberry Pi Zero

[74]

2. Now reboot Raspberry Pi; you can use the smbus library ability to read and
write from your I2C device. Fortunately, in this case the device comes with
some example code on how to configure the device and then read a value's.
Here is an example of a Python code:

Chapter 3

[75]

Run the code by typing python compass.py and you should see the
following output:

As you move the device around, you should see this value change to reflect the
device's compass direction.

This is just an example of how to connect an I2C device. There are a number of
different other devices that can be connected to the GPIO bus of Raspberry Pi Zero.

Summary
That's it! You've completed your very first hardware project. You should now feel
at least a little comfortable with Raspberry Pi Zero's GPIO bus. In the next chapter,
you'll learn how to create a Raspberry Pi Zero controlled car.

[77]

Building and Controlling a
Simple Wheeled Robot

You should now be familiar with how to program your Raspberry Pi Zero and how
to communicate with the outside world with the GPIO. Now, let's actually build
a mobile project. Perhaps the easiest way to make your projects mobile is to use a
wheeled platform. In this chapter, you will be introduced to some of the basics of
manipulating DC motors and using the Raspberry Pi Zero to control the speed and
direction of your wheeled platform.

In this chapter, you will learn how to perform the following actions:

• Using the Raspberry Pi Zero GPIO to control a DC motor
• Controlling your mobile platform programmatically using the

Raspberry Pi Zero
• Implementing some simple path planning algorithms on the

Raspberry Pi Zero

The basic platform
You'll need to add some hardware, specifically a wheeled or tracked platform, to
make your project mobile. You're going to use a platform that uses differential
motion to propel and steer the vehicle. This simply means that, instead of turning the
wheels, you're going to vary the speed and direction of the two motors that drive the
wheels or tracks. There are a lot of choices. Some come fully assembled while others
require some assembly; alternatively you can buy the components and build your
own custom mobile platform.

Building and Controlling a Simple Wheeled Robot

[78]

Let's look at a couple of the more popular units that come fully assembled or can be
assembled with simple tools (a screwdriver or pliers). The simplest mobile platform
is one that has two DC motors, with each motor controlling a single wheel. On the
wheeled platform, there is a small wheel or ball in the front or at the back. Here is
one example of a wheeled platform, available at many online electronics retailers:

Here is another simple wheeled platform, also sold by many online
electronics retailers:

Chapter 4

[79]

This one also needs to be assembled but it is fairly straightforward. You could
also choose a tracked platform instead of a wheeled platform. A tracked platform
has more traction but is not as nimble, as it takes a longer distance to turn. Again,
manufacturers make pre-assembled units. The following image is an example
of a pre-assembled tracked platform made by Dagu. It's called the Dagu Rover
5 Tracked Chassis:

As part of the platform, you'll need a mobile power supply for the Raspberry Pi Zero
and your vehicle. I personally like the external 5V rechargeable cell phone batteries
which are available at almost any place that sells cell phones. These batteries can be
charged using a USB cable connected either through a DC power supply or directly
from a computer USB port, as shown in the following image:

You'll also need a USB cable to connect your battery to the Raspberry Pi Zero.
Now that you have the basic platform, you're ready to start controlling it with the
Raspberry Pi Zero.

Building and Controlling a Simple Wheeled Robot

[80]

There are two choices here and I'll walk you through both. Firstly, you can use a
chip called an H-bridge, plug it into your electronic breadboard, and control the DC
motors with connections to the GPIO of the Raspberry Pi Zero. The second choice
is to use a dedicated motor controller board designed to connect directly onto the
Raspberry Pi Zero's GPIO pins. Let's cover the H-bridge option first.

Controlling an H-bridge interface to the
DC motors
The first step to make the platform mobile is to connect the Raspberry Pi Zero
to your H-bridge. This allows you to control the speed of each wheel (or track)
independently. Before you get started, let's spend some time learning the basics of
motor control. Whether you choose the two-wheeled mobile platform or the tracked
platform, the basic movement control is the same. The unit moves by engaging the
motors. If the desired direction is straight ahead, the motors are run at the same
speed. If you want to turn the unit, the motors are run at different speeds. The unit
can turn in a circle if you run one motor forwards and the other one backwards.

The DC motors are fairly straightforward devices. The speed and direction of the
motor is controlled by the magnitude and polarity of the voltage applied to its
terminals. The higher the voltage, the faster the motor will turn. If you reverse the
polarity of the voltage, you can reverse the direction in which the motor turns.

The magnitude and polarity of the voltage are not the only important factors when
you think about controlling the motors. The power that your motor can apply to
move your platform is also determined by the voltage and the current supplied
to its terminals.

There are GPIO (short for general purpose input-output) pins on the Raspberry Pi
Zero that you can use to control the voltage and drive your motors. These GPIO pins
provide direct access to some of the control lines available from the processor itself.
However, the unit cannot obtain enough current and your motors will not be able to
generate enough power to move your mobile platform. This can also cause physical
damage to your Raspberry Pi Zero board.

Chapter 4

[81]

You can, however, connect your Raspberry Pi Zero to the DC motors by using an
H-bridge DC motor controller. An H-bridge is a fairly simple device. It basically
consists of a set of electronic switches and provides the additional functionality of
allowing the direction of the current to be reversed so that the motor can be run in
either forward or reverse directions.

Let's start this example by building the H-bridge circuit and controlling just one
motor. To do this, you need to get an H-bridge. One of the most common options
is the L293 dual H-bridge chip. This chip allows you to control the direction of the
DC motors. These are available at most electronics stores and online. Once you have
your H-bridge, build the circuit as shown in the following image with the Raspberry
Pi Zero, the motor, the jumper wires, a 4AA battery holder, and a breadboard:

Building and Controlling a Simple Wheeled Robot

[82]

Also, before you start connecting wires, here is an image of the GPIO pins on the
Raspberry Pi Zero board:

You need to connect these pins on the Raspberry Pi Zero GPIO to the pins on the
H-bridge, as shown in the following table:

Raspberry Pi Zero GPIO pin H-bridge pin
4 (5V) 1 (Enable pin)
13 (GPIO 27) 2 (Forward)
15 (GPIO 22) 7 (Backward)
4 (5V) 11 (Enable 2)
38 (GPIO 6) 10 (Forward)
40 (GPIO 13) 15 (Backward)
6 (GND) 4, 5, 12, 13 (GND)
2 (5 Volts) 16 (VCC)
Battery positive terminal 8 (Vc)
Battery negative terminal GND (connect to the same

GND as previous GND pins)

Once you have the connections, you can test the system. To make this all work,
you need to add some code, which we will see in the next section.

Chapter 4

[83]

Controlling your mobile platform
programmatically using the Raspberry Pi
Zero
Now that you have your basic motor controller functionality up and running, you
need to connect both motor controllers to the Raspberry Pi Zero. This section will
cover this and also show you how to control your entire platform programmatically.

You are going to use Python in your initial attempts to control the motor. It is very
straightforward to code, run, and debug your code in Python. The first Python
program you are going to create is shown in the following screenshot:

Building and Controlling a Simple Wheeled Robot

[84]

Perform the following steps to create this program:

To create this program, create a directory called dcmotor in your home directory
by typing mkdir dcmotor and then type cd dcmotor. Now, open the file by typing
emacs dcmotor.py (if you are using a different editor, open a new file with the
dcmotor.py name).

Now, enter the program. Let's go through the program step by step:

• #!/usr/bin/python: This line lets you run the program without having to
type python before the filename. You'll learn how to do this at the end of
these instructions.

• import RPi.GPIO as io: This lets you import the RPi library, which allows
you to control the GPIO pins.

• io.setmode(io.BCM): This sets the specification mode of the GPIO pins to
Broadcom SOC channel (BCM) number. This means that you will specify
the GPIO numbers of the pins you want to control instead of the actual
physical pin values.

• in1_pin1 = 27: This assigns the value 27 to the in1_pin1 variable.
• in2_pin1 = 22: This assigns the value 22 to the in1_pin1 variable.
• in1_pin2 = 20: This assigns the value 20 to the in1_pin1 variable.
• in2_pin2 = 21: This assigns the value 21 to the in1_pin1 variable.
• io.setup(in1_pin1, io.OUT): This sets GPIO pin 27 to an output control.
• io.setup(in2_pin1, io.OUT): This sets GPIO pin 22 to an output control.
• io.setup(in1_pin2, io.OUT): This sets GPIO pin 20 to an output control.
• io.setup(in2_pin2, io.OUT): This sets GPIO pin 21 to an output control.
• def forward():: This defines the forward function. You have to turn on

GPIO 27 and GPIO 20 and turn off GPIO 22 and GPIO 21.
• io.output(in1_pin1, True): Output a 3.3 volt signal on in1_pin1

(this is GPIO 27).
• io.output(in2_pin1, False): Output 0 volts on in2_pin1

(this is GPIO 22).
• io.output(in1_pin2, True): Output a high voltage on in1_pin2 (this is

GPIO 20).

Chapter 4

[85]

• io.output(in2_pin2, False): Output 0 volts on in2_pin2
(this is GPIO 21).

• def reverse():: This defines the reverse function. You'll turn on GPIO 22
and GPIO 21, and turn off GPIO 27 and GPIO 20.

• io.output(in1_pin1, False): Output 0 volts on in1_pin1
(this is GPIO 27).

• io.output(in2_pin1, True): Output a high voltage on in2_pin1 (this is
GPIO 22).

• io.output(in1_pin2, False): Output 0 volts on in1_pin2
(this is GPIO 20).

• io.output(in2_pin2, True): Output a high voltage on in2_pin2
(this is GPIO 21).

• def stop():: This defines the stop function. You set the level to 0 on the
pins off GPIO 22, GPIO 21, GPIO 27, and GPIO 20.

• io.output(in1_pin1, False): Output 0 volts on in1_pin1
(this is GPIO 27).

• io.output(in2_pin1, False): Output 0 volts on in2_pin1
(this is GPIO 22).

• io.output(in1_pin2, False): Output 0 volts on in1_pin2
(this is GPIO 20).

• io.output(in2_pin2, False): Output 0 volts on in2_pin2
(this is GPIO 21).

• while True:: This performs loops over and over. You can stop the program
by pressing Ctrl + C.

• cmd = raw_input("Enter f (forward) or r (reverse) or s (stop):
"): Enter a character for what you want the robot to do.

• direction = cmd[0]: Take only the first character of the input.
• if direction == "f":: If the direction is "f", then execute the

next statement.
• forward(): Execute the forward function.
• if direction == "r":: If the direction is "f", then execute the

next statement.
• reverse(): Execute the reverse function.
• if direction == "s":: If the direction is "f", then execute the

next statement.
• stop(): Execute the stop function.

Building and Controlling a Simple Wheeled Robot

[86]

You can now run your program. In order to do this, type
sudo python ./dcmotor.py. When you enter f, the motors should
run forward; with r they should run backward; and with s, they should
stop. You can now control the motor with Python. Additionally, you may
want to make this program available to run from the command line. Type
chmod +x dcmotor.py. If you now type ls (list programs), you'll see that
your program is now green, which means that you can execute it directly.
Now you can type sudo ./dcmotor.py and the program will run.

Now that you know the basics of commanding your mobile platform, feel free to add
even more functions and commands to make your mobile platform move in different
ways. Running just one motor will make the platform turn, as will running both
motors in opposite directions.

Controlling the speed of your motors
with PWM
The previous example either turned the motors on to full speed or turned them off.
You may want to configure your motors to run at different speeds. This can be done
by using Pulse Width Modulation (PWM) to adjust the speed. PWM simply defines
a way of changing the voltage of the signal by sending a series of pulses of equal
value and changing the width of each pulse. The wider the pulse, the higher the
average voltage delivered to the receiver. The DC motors that you are using
respond to this higher average voltage by spinning faster.

The Raspberry Pi Zero GPIO can create PWM signals. The code snippet to do this is
shown in the following screenshot:

Chapter 4

[87]

The following is an explanation of the lines of code that you just added:

• io.setup(in2_pin1, io.OUT): This sets GPIO 27 to an output.
• p1 = io.PWM(in1_pin1, 50): Instead of just on or off settings, this PWM

setting allows the programmer to set the relative width of the pulse. This
initializes this functionality on GPIO 27.

• p1.start(0): This starts the pulses on p1, GPIO 27, with a pulse width of 0
percent, or off.

• io.setup(in2_pin1, io.OUT): This sets GPIO 22 to an output.

Building and Controlling a Simple Wheeled Robot

[88]

• p2 = io.PWM(in2_pin1, 50): This initializes this functionality on GPIO 22.
• p2.start(0): This starts the pulses on p2, GPIO 22, with a pulse width of 0

percent, or off.
• io.setup(in1_pin2, io.OUT): This sets GPIO 20 to an output.
• p3 = io.PWM(in1_pin2, 50): This initializes this functionality on GPIO 20.
• p3.start(0): This starts the pulses on p3, GPIO 20, with a pulse width of 0

percent, or off.
• io.setup(in2_pin2, io.OUT): This sets GPIO 21 to an output.
• p4 = io.PWM(in2_pin2, 50): This initializes this functionality on GPIO 21.
• p4.start(0): This starts the pulses on p3, GPIO 21, with a pulse width of 0

percent, or off.
• def forward(50):: This function moves the unit forward by setting the

pulse width in a forward direction to 50 percent.
• p1.start(50): This sets the value of p1 (GPIO 27) to 50 percent on and 50

percent off. This should result in the motor running forward at half speed.
• p2.start(0): This sets the value of p2 (GPIO 22) to 0 percent. This

effectively turns this pin off.
• p3.start(50): This sets the value of p3 (GPIO 20) to 50 percent on and 50

percent off. This should result in the motor running forward at half speed.
• p4.start(0): This sets the value of p4 (GPIO21) to 0 percent. This effectively

turns this pin off.
• def reverse(50):: This function moves the unit in reverse by setting the

pulse width in the reverse direction to 50 percent.
• p1.start(0): This sets the value of p1 (GPIO 27) to 0 percent. This

effectively turns this pin off.
• p2.start(50): This sets the value of p2 (GPIO 22) to 50 percent on and 50

percent off. This should result in the motor running in reverse at half speed.
• p3.start(0): This sets the value of p3 (GPIO 20) to 0 percent. This

effectively turns this pin off.
• p4.start(50): This sets the value of p4 (GPIO21) to 50 percent on and 50

percent off. This should result in the motor running in reverse at half speed.
• def stop():: This function sets all PWM signals to 0 percent, effectively

stopping the motors.
• p1.start(0): This sets the value of p1 (GPIO 27) to 0 percent. This

effectively turns this pin off.

Chapter 4

[89]

• p2.start(0): This sets the value of p2 (GPIO 22) to 0 percent.
This effectively turns this pin off.

• p3.start(0): This sets the value of p3 (GPIO 20) to 0 percent.
This effectively turns this pin off.

• p4.start(0): This sets the value of p4 (GPIO 21) to 0 percent.
This effectively turns this pin off.

The rest of the program is the same as the first dcmotor.py file. Running this
program should result in the unit running at half the speed of the first program. You
can easily change this speed by changing the value sent to the various start functions.

You can also control the DC motors by using a DC motor controller to connect to
the Raspberry Pi Zero directly. For example, Pololu, who can be found at https://
www.pololu.com/, make the DRV8835 Dual Motor Driver Kit for the Raspberry Pi.
Another option is the RasPiRobot Board V2 available at http://www.monkmakes.
com/. For this example, we will use the RasPiRobot Board V2.

Using a motor controller board to control
the DC motors
To build this project, you'll start by installing the motor controller board on top of the
Raspberry Pi Zero, like this:

https://www.pololu.com/
https://www.pololu.com/
http://www.monkmakes.com/
http://www.monkmakes.com/

Building and Controlling a Simple Wheeled Robot

[90]

The board provides the drive signals for the DC motors on the vehicle. You can
also turn the vehicle by driving each motor separately. You can change the vehicle's
direction and make very sharp turns by reversing the signals. The following steps
show how to connect the motor control board:

1. Connect the battery power connector to the power connector on the board.
Use a 6 to 7.4 volts battery; you can either use a 4 AA battery holder or a 2S
LiPo RC battery. Connect the ground and power wires to the motor control
board as shown:

Chapter 4

[91]

2. Next, connect one of the drive signals to the motor 1 connector on the board.
Connect motor 1 to the right motor and motor 2 to the left, as shown:

Building and Controlling a Simple Wheeled Robot

[92]

3. Then, connect the second drive connector to the motor 2 connector on the
board. The entire set of connections should look like this:

Now you are ready to drive your vehicle using the Raspberry Pi Zero.

Controlling the vehicle using the
Raspberry Pi Zero in Python
The first step to take advantage of the functionality is to install the library associated
with the control board, which can be found at http://www.monkmakes.com/?page_
id=698. You need to connect your Raspberry Pi Zero to the Internet with either a
wired or WLAN connection. Issue the following commands in a terminal window on
your Raspberry Pi Zero:

1. Type wget https://github.com/simonmonk/raspirobotboard2/raw/
master/python/dist/rrb2-1.1.tar.gz: This will download the library to
your Raspberry Pi.

http://www.monkmakes.com/?page_id=698
http://www.monkmakes.com/?page_id=698

Chapter 4

[93]

2. Type tar -xzf rrb2-1.1.tar.gz: This unarchives the library.
3. Type cd rrb2-1.1: This changes directory to the location of the files.
4. Type sudo python setup.py install: This installs the libraries.

Now that you have the library code installed, you need to create some Python code
that will allow you to access the two motors. The first part of the code should look
as follows:

Building and Controlling a Simple Wheeled Robot

[94]

The second part of the code that drives the two different motors, based on whether
you want to go forwards, backwards, or turn right or left, is as follows:

The rr.set_motors() function allows you to specify the speed and direction of
each motor independently. This program takes in a single character and then sends a
command to the motors. f moves the vehicle forward, b moves it backward, l turns
it left, r turns it right, and s stops the vehicle.

Chapter 4

[95]

Now that you have the basic code to drive your tracked vehicle, you can modify it so
that each action is contained in a function. In that way, you can call these functions
from another Python program. You also need to add calibrated movement so that
your tracked vehicle is able to turn at a certain angle and move forwards a set
distance. The following example is what the code should look like:

The time.sleep(angle/20) command in the turn_right(angle) and
turn_left(angle) functions allows the tracked vehicle to move for the right
amount of time so that the vehicle moves through the desired angle. You
may need to modify this number to get the correct angle of movement. The
time.sleep(value) command moves the robot for a specific amount of time,
based on the number given in the value.

Building and Controlling a Simple Wheeled Robot

[96]

If you have chosen to use the RasPiRobot Board V2 you can also use its special
connections and libraries to connect the HC-SR04 sonar sensor. Here is a picture
of the special connector on the board:

To use this connector, simply connect the VCC to the 5V, the Trig to the T
connection, the Echo to the E connector, and the GND to the GND connection. You
can then use the library for the motor controller board and simply call the function
rr.get_distance(). Similarly, there is also a special connector and libraries for the
I2C interface, if you want to add the compass to your mobile project.

Planning your path
Now that you have a wheeled or tracked vehicle, you may want to do some basic
path planning. To do this, you need a framework to understand where your robot is
and determine the location of the goal. One of the most common frameworks is an
x-y grid. The following diagram is an example of this type of grid:

Chapter 4

[97]

There are three key points on this grid that you need to understand. Here is an
explanation of them:

• The lower left point is a fixed reference position. The directions x and y are
also fixed and all other positions are measured in relation to this position
and these directions. Each unit is measured with regards to how far the unit
travels in time in a single unit.

• Another important point is the starting location of your robot. Your robot
will then keep track of its location using its x and y coordinates, the position
with respect to some fixed reference position in the x direction, or the
position with respect to some fixed reference position in the y direction
to the goal. It uses the compass to keep track of these directions.

• The third important point is the position of the goal, also given in the x and
y coordinates with respect to the fixed reference position. If you know the
starting location and angle of your robot, you can plan an optimum (the
shortest distance) path to this goal. To do this, you can use the goal location,
the robot location and some fairly simple math to calculate the distance and
angle from the robot to the goal.

Building and Controlling a Simple Wheeled Robot

[98]

To calculate the distance, use the following equation:

() ()()2 2d Xgoal Xgoal Ygoal Yrobot= − + −

You use this equation to tell your robot how far to travel to reach the goal. A second
equation tells your robot the angle at which it needs to travel:

()
()

arctan
Ygoal Yrobot
Xgoal Xrobot

θ
−

=
−

If you'd like a tutorial on the basic math of path planning, see
https://www.khanacademy.org/math/trigonometry/
trigonometry-right-triangles.

Here is the graphical representation of these two pieces of information:

Now that you have a goal angle and distance, you can program your robot to
move. To do this, you need to write a program to do the path planning and call the
movement functions that you created earlier in the chapter. You need to know the
distance that your robot will travel in a certain period of time so that you can tell
your robot in time units, rather than distance units, how far to travel.

You also need to be able to translate the distance that might be covered by your
robot in each time unit that you run the motor. If you know the angle and distance,
you can move your robot towards the goal by turning the robot and then running it
forward for a certain time.

https://www.khanacademy.org/math/trigonometry/trigonometry-right-triangles
https://www.khanacademy.org/math/trigonometry/trigonometry-right-triangles

Chapter 4

[99]

Here are the steps that you need to follow:

1. Calculate the distance in units that your robot will travel to reach its goal.
Convert this into a number of time units to realize this distance.

2. Calculate the angle at which your robot will need to travel to reach its goal.
You need to use the compass and your robot's turn functions to turn and
achieve this angle.

3. Now, call the step function a specified number of times to move your robot
in the correct distance.

That's it. Now you can use some very simple Python code to execute these steps
using the functions to move the robot forwards and turn it. In this case, it makes
sense to create a file called robotLib.py with all the functions that do the actual
servo settings to move the wheeled robot forwards and turn the robot. You then
import these functions using the from robotLib import * statement so that your
Python program can call these functions. This makes the path planning Python
program much smaller and more manageable.

For more information on how to import functions from one Python file to another,
refer to http://www.tutorialspoint.com/python/python_modules.htm.

Here is a screenshot of the program:

http://www.tutorialspoint.com/python/python_modules.htm

Building and Controlling a Simple Wheeled Robot

[100]

In this program, the user determines the goal location and the robot decides on the
shortest direction to the desired location by reading the angle. To make it simple, the
robot is positioned in the grid, heading in the direction of an angle of 0 degrees. If the
goal angle were less than 180 degrees, the robot would turn right. If it were greater
than 180 degrees, the robot would turn left. The robot turns until the desired angle
and the measured angle are within a few degrees of each other. Then, the robot takes
the number of steps to reach the goal. As an additional challenge, you could add a
loop to measure the actual angle and stop it when it reaches the target angle.

Summary
This chapter provided you with an opportunity to create a mobile platform for your
Raspberry Pi Zero. You can add the sonar sensor or the compass from Chapter 3,
Accessing the GPIO Pins on Raspberry Pi Zero to give it even more functionality. In the
next chapter, you'll learn how to build a Raspberry Pi Zero platform robot with legs,
an even more flexible mobile platform.

[101]

Building a Robot
That Can Walk

Now that you are familiar with robots that can navigate using tracks or wheels,
let's build one that can walk. Walking robots are interesting as they can navigate
the terrain where wheeled or tracked vehicles can't go. They also provide advanced
functions where the robot can use their legs for purposes other than walking.

In this chapter, you will build the basic quadruped platform. To do this you
will learn:

• How servos work
• How to use the Raspberry Pi to control lots of servos using a servo controller
• Creating complex movements out of simple servo commands

Robots that can walk
In this chapter, you'll build a quadruped robots. You'll be using 12 servos so that
each leg has three points that can move, or three Degrees of Freedom (DOF). In this
project, you'll control 12 servos at the same time; so it makes sense to use an external
servo controller that can supply the control signals and supply voltages for all 12
servos. Since servos are the main component of this project, it will perhaps be useful
to go through a tutorial on servos and learn how to control them.

Building a Robot That Can Walk

[102]

How servo motors work
Servo motors are similar to DC motors; however, there is an important difference.
While DC motors are generally designed to move in a continuous way—rotating 360
degrees at a given speed—servos are generally designed to move in a limited set of
angles. In other words, in the DC motor world, you generally want your motors to
spin with a continuous rotation speed that you control. In the servo world, you want
your motor to move to a specific position that you control. This is done by sending a
Pulse-Width-Modulated (PWM) signal on the control connector of the servo. PWM
simply means that you are going to change the length of each pulse of electrical
energy in order to control something. In this case, the length of this pulse will control
the angle of the servo, as shown:

These pulses are sent out with a repetition rate of 60 Hz. You can position the servo
at any angle by setting the correct control pulse.

Chapter 5

[103]

Building the quadruped platform
You'll first need some parts, so you can build your quadruped robot. There are
several kit possibilities out there, including at http://www.trossenrobotics.
com/p/PhantomX-AX-12-Quadruped.aspx. However, such kits can be expensive; so
for this example, you'll create your own kit using a set of Lynxmotion parts. These
are available with several on-line retailers, such as http://www.robotshop.com/. To
build this quadruped, you'll need two sets each of the two leg parts and then one set
each of a body. Here are the parts with their Robotshop part number:

Quantity Description
1 Lynxmotion Symmetric Quadrapod Body Kit - Mini QBK-02
2 Lynxmotion 3'' Aluminum Femur Pair
2 Lynxmotion Robot Leg "A" Pair (No Servo) RL-01
4 Lynxmotion Aluminum Multipurpose Servo Bracket Two Pack ASB-04
2 Ball Bearing with Flange - 3mm ID (pair)

Product Code: RB-Lyn-317

The last part is not a Lynxmotion part but a bearing that you'll need to connect the
legs to the body.

You'll also need 12 standard-size servos. There are several possible choices, but I
personally like the Hitec servos. They are very inexpensive servos that you can get at
most hobby shops and on-line electronics retailers. Now its time to get to know some
details about the selection of the model of servo. Servos come in different model
numbers, primarily based on the amount of torque they can generate.

Torque is the force that the servo can exert to move the part connected to it. In
this case, your servos will need to lift and move the weight associated with your
quadruped, so you'll need a servo with enough torque to do this. In this case, I
suggest you use eight model HS-485HB servos. You'll use these for the servos
attached to the end of the leg and for the body. Then you'll use four model
HS-645MG servos for the middle of the leg; this is the servo that will require
the highest amount of torque. You can also just use twelve HS-645MG servos,
but they are more expensive than the HS-485, so using the two different servos
will be less expensive.

http://www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx
http://www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx
http://www.robotshop.com/

Building a Robot That Can Walk

[104]

The following are the steps to assemble the quadruped:

1. Put the lower part of the right leg together; it should look like the
following image:

2. Now connect this assembly to an interconnecting piece, as shown:

Chapter 5

[105]

3. Complete the leg by connecting two of the servo brackets together at
right angles, mounting the HS-645MG onto one of the brackets, and then
connecting this servo to the interconnecting piece, as shown:

4. Put the other right leg together.
5. Now put the two left legs together by following the preceding steps, but in

left leg configuration. They look similar to the following image:

Building a Robot That Can Walk

[106]

6. The next step is to build the body kit. You can find the instructions at
http://www.lynxmotion.com/images/html/sq3u-assembly.htm.

7. Now connect each leg to the body kit. Here is a picture of the body kit:

8. Now, connect the servo to the empty servo bracket and the body as shown:

Your quadruped should now look similar to the following image:

http://www.lynxmotion.com/images/html/sq3u-assembly.htm

Chapter 5

[107]

Now that you have the basic hardware assembled, you can turn your attention to
the electronics.

Using a servo controller to control the
servos
To make your quadruped walk, you first need to connect the servo motor controller
to the servos. The servo controller you are going to use for this project is a simple
servo motor controller using USB from Pololu: Pololu item number 1354, available at
https://www.pololu.com/, which can control 18 servo motors. Here is an image of
the unit:

https://www.pololu.com/

Building a Robot That Can Walk

[108]

Make sure you order the assembled version. This piece of hardware will turn the
USB commands from the Raspberry Pi Zero into signals that control your servo
motors. Pololu makes a number of different versions of this controller; each version
can control a certain number of servos. In this case, you may want to choose the
18-servo version, so you can control all 12 servos with one controller and also add
an additional servo to control the direction of a camera or sensor; you can also
choose the 12-servo version. One advantage of the 18-servo controller is the ease of
connecting power to the unit via screw-type connectors.

There are two connections that you'll need to make to the servo controller to get
started: the first to the servo motors, the second to a battery.

First, connect the servos to the controller. In order to be consistent, let's connect
your 12 servos to the connections marked 0 through 11 on the controller using the
following configuration:

Servo connector Servo
0 Right front lower leg
1 Right front middle leg
2 Right front upper leg
3 Right rear lower leg
4 Right rear middle leg
5 Right rear upper leg
6 Left front lower leg
7 Left front middle leg
8 Left front upper leg
9 Left rear lower leg
10 Left rear middle leg
11 Left rear upper leg

Here is an image of the back of the controller; this will tell us where to connect
our servos:

Chapter 5

[109]

Now you need to connect the servo motor controller to your battery. For this project,
you can use a 2S RC LiPo battery. The 2S means that the battery will have two cells,
with an output voltage of 7.2 volts. It will supply the voltage and current needed by
your servos, which can be in the order of 2 amps, as shown in the following image:

Building a Robot That Can Walk

[110]

This battery will come with two connectors, one with larger gauge wires for normal
usage and a smaller connector to connect to the battery recharger. You'll want
to build connectors that can connect to the screw-type connectors of the servo
controller. I purchased a few XT60 connector pairs and soldered some wires to the
mating connector of the battery and then screwed these into the servo controller.

Your system is now functional. Now you'll connect the motor controller to your
personal computer to check whether you can communicate with it. To do this,
connect a mini USB cable to the servo controller and your personal computer. I'll
detail the directions with a PC, but you can also do this step with a Mac or Linux.
You can find the details at https://www.pololu.com/docs/0J40.

Communicating between the servo
controller and a PC
Now that the hardware is connected, you can use some software provided by Pololu
to control the servos. Let's do this using your personal computer. First, download the
Pololu software from www.pololu.com/docs/0J40/3.a and install it based on the
instructions on the website. Once it is installed, run the software and you should be
able to see this screen:

https://www.pololu.com/docs/0J40
www.pololu.com/docs/0J40/3.a

Chapter 5

[111]

You will first need to change the configuration in Serial Settings, so select the Serial
Settings tab, and you should see this:

Building a Robot That Can Walk

[112]

Make sure that USB Chained is selected; this will allow you to connect and control
the motor controller over USB. Now go back to the main screen by selecting the
Status tab; now you can actually turn on the 12 servos. The screen should look
like this:

Chapter 5

[113]

You can now use the sliders to actually control the servos. Make sure that servo 0
moves the right front lower servo, 1 the right front middle servo, 2 the right front
upper servo, and so on. You can also use this to center the servos. Set all the servos
so that the slider is in the middle. Now, unscrew the servo horn on each servo until
the servos are centered at this location. At the zero location for all of your servos
your quadruped should look like this:

Your quadruped is now ready to actually do something. Now, you'll need to send
the servos the electronic signals they need to move your quadruped.

Building a Robot That Can Walk

[114]

Connecting the servo controller to the
Raspberry Pi Zero
You've checked the servo motor controller and the servos; you'll now connect the
motor controller to the Raspberry Pi Zero and make sure that you can control the
servos from it. Remove the USB cable from the PC and connect it to the Raspberry Pi
Zero. The entire system will look similar to the following image:

The Raspberry Pi Zero is in the middle, the motor controller is to the right, and the
powered hub to the left. The alligator clips below are connected to a power supply;
eventually you'll want to connect these to a battery.

Chapter 5

[115]

Let's now talk to the motor controller by downloading the Linux code from Pololu at
www.pololu.com/docs/0J40/3.b:

1. Perhaps the best way is to log on to your Raspberry Pi Zero through PuTTY,
then type wget http://www.pololu.com/file/download/maestro-
linux-100507.tar.gz?file_id=0J315.

2. Then, move the file using mv maestro-linux-100507.tar.gz\?file_
id\=0J315 maestro-linux-100507.tar.gz.

3. Unpack the file by typing tar –xzfv maestro-linux-100507.tar.gz.
4. This will create a directory called maestro_linux. Go to that directory by

typing cd maestro_linux and then type ls -l; you should see something
similar to this:

The document README.txt will give you explicit instructions on how to install the
software. This is basically done in two steps:

1. First, install a set of supporting libraries by typing sudo apt-get install
libusb-1.0-0-dev mono-runtime libmono-winforms2.0-cil.

2. Then, copy the configuration file by typing sudo cp 99-pololu.rules
/etc/udev/rules.d/.

www.pololu.com/docs/0J40/3.b

Building a Robot That Can Walk

[116]

Unfortunately, you can't run Maestro Control Center on your Raspberry Pi Zero
because your version of Windows doesn't support the graphics, but you can control
your servos using the UscCmd command-line application to ensure that they are
connected and working correctly.

First, type ./UscCmd --list and you should see the following:

The unit sees our servo controller. If you just type ./UscCmd, you can see all the
commands you can send to your controller:

Chapter 5

[117]

Note that you can send a servo a specific target angle, although the target is not in
degrees of angle values so it makes it a bit difficult to know where you are sending
your servo.

Try typing ./UscCmd --servo 0, 10. The servo will move to its full angle position.

Type ./UscCmd – servo 0, 0 and it will stop the servo from trying to move.

In the next section, you'll write some Python code that will translate your angles into
commands that the servo controller will want to move it to specific angle locations.

If you didn't run the Windows version of Maestro Controller
and set the Serial Settings to USB Chained, your motor
controller may not respond. Rerun the Maestro Controller code
and set the Serial Settings to USB Chained.

Building a Robot That Can Walk

[118]

Creating a program in Linux to control
your quadruped
You now know that you can talk to your servo motor controller and move your
servos. In this section, you'll create a Python program that will let you talk to your
servos to move them to specific angles.

Let's start with a simple program that will make your legged mobile robot's servos
go to 90 degrees (which should be somewhere close to the middle of the 0 to 180
degrees you can set.) To access the serial port, you'll need to make sure that you have
the Python serial library. If you don't, then type sudo apt-get install python-
serial. After you have installed the serial library, you can run your program by
typing sudo python quad.py.

This particular controller uses two bytes of information, so the code in the setAngle
function will translate the input of the channel and angle into numbers that the
controller can understand. For more specifics, see http://www.pololu.com/
docs/0J40. Here is the code:

Here is an explanation of the code:

• #! /usr/bin/python: This first line allows you to execute this Python file
from the command line.

http://www.pololu.com/docs/0J40
http://www.pololu.com/docs/0J40

Chapter 5

[119]

• import serial: This line imports the serial library. You need the serial
library to talk to your unit via USB.

• def setAngle(ser, channel, angle):: This function converts your
desired setting for servo and angle into the serial command that the servo
motor controller needs.

• ser = serial.Serial("/dev/ttyACM0", 9600): This opens the serial port
connection to your servo controller.

• for i in range(0, 12):: This for loop will access each servo.
• setAngle(ser, i, 90): Now, you can set each servo to the middle

(home) position. The default would be to set each servo to 90 degrees. If your
legs aren't in their middle position, you can adjust them by adjusting the
position of the servo horns on each servo.

Once you have the basic home position set, you can now ask your robot to do things.
Let's start by making your quadruped wave. Here is the Python code:

Building a Robot That Can Walk

[120]

In this case, you are using the setAngle command to set your servos to manipulate
your robot's front-right arm. The middle servo raises the arm and the lower survey
then goes back and forth between angle 100 and 130 degrees.

One of the most basic actions you'll want your robot to take is to walk forward.
Here is an example of how to manipulate the legs to make this happen:

Chapter 5

[121]

This program lifts and then moves each leg forward, one at a time, then moves all
the legs to the home position, which moves the robot forward. Not the most elegant,
but it does work. There are more sophisticated algorithms for walking with your
quadruped; see http://letsmakerobots.com/node/35354 and https://www.
youtube.com/watch?v=jWP3RnYa_tw. Once you have the program working,
you'll want to package all your hardware onto the mobile robot.

You can make your robot do many amazing things, such as walk forward, walk
backward, dance, and turn around; any number of movements are possible.
The best way to learn is to try new and different positions with the servos.

Summary
You now have a robot that can walk! You can also add other sensors, such as the
ones you discovered for your wheeled robot, sensors that can watch for barriers,
or others that know the direction you are moving in.

In the next chapter, you'll start on a new robot. You'll combine a Raspberry Pi Zero
with a toy robot and construct a project with the ability to speak and respond to
voice commands.

http://letsmakerobots.com/node/35354
https://www.youtube.com/watch?v=jWP3RnYa_tw
https://www.youtube.com/watch?v=jWP3RnYa_tw

[123]

Adding Voice Recognition
and Speech – A Voice

Activated Robot
You've started with some pretty basic projects but you can take the concepts you
have learned further by modifying robotic toys with the Raspberry Pi Zero. One
class of toys that are excellent candidates for your projects are a set of robot toys by
WowWee. You can purchase these toys from the company at http://wowwee.com/
but you can also find used versions of these toys on eBay for a significantly
lower price.

In this chapter, you'll learn the following:

• How to break into the toy and provide the control signals for your project
• How to send and receive voice commands to control the robot
• How to interpret commands and initiate actions

http://wowwee.com/

Adding Voice Recognition and Speech – A Voice Activated Robot

[124]

There are several toys that have excellent possibilities. One such toy is the WowWee
Roboraptor. The following picture shows this robot:

Another option is the WowWee Robosapien. Here is a picture of this one:

Chapter 6

[125]

We will use this robot for the project, as it has more functionality and is easier
to modify.

Communication between the Raspberry
Pi Zero and the robot
You're going to connect to the internal serial bus so that you, not the remote, can
send commands. You'll add an Arduino to handle real-time communication between
the Raspberry Pi Zero and the robot. Here are the steps:

1. Firstly, you need to disassemble the robot to get access to the main controller
board. To do this, lay the robot face down so that you have access to the
back. Remove the plate at the back by unscrewing the four screws that hold
it in place. Now, at the top of the exposed board, you should see the main
connector. The following image is a close-up photograph of the connector:

There are only two wires that you are interested in. The first is the black wire,
which is the GND for the Robosapien system. The second is the white wire.
This is the serial connection that controls the command for the Robosapien.

Adding Voice Recognition and Speech – A Voice Activated Robot

[126]

2. So, you're going to connect a wire to the black wire, but you need both ends
of the black wire to stay connected to the system. To do this, strip off a bit
of the insulation with a soldering iron and then solder another wire at this
point. The following image illustrates this:

3. Now, snip the white wire and connect a wire to the end that is connected to
the white header connector, as shown in this image:

Chapter 6

[127]

You may want to add some heat-shrink tubing to cover your connections.

4. Finally, drill a hole in the back shell of the robot so that you can run both of
these cables out of the unit, as shown in the following image:

5. This picture also shows two more holes on either side of the shell, which you
can use together with cable ties to attach the Raspberry Pi to the robot. Now
you can put the shell back onto the robot.

6. Now, you need to connect these two wires to the Arduino. There are several
versions of the Arduino that work but the most common one is the Arduino
Uno. If you use a different Arduino with a different time, the delay constant
in the Arduino code may need adjusting. The reason that you need to use
an Arduino is that the bit patterns that are sent to the robot are sent at a
fairly high rate and need to be created by a processor dedicated to this type
of real-time communication. This allows the Raspberry Pi Zero to perform
other processor-intensive activities, such as speech, while keeping the
communication flowing at the correct rate.

Adding Voice Recognition and Speech – A Voice Activated Robot

[128]

For specifics on how to use the development environment of the Arduino
family of processors, visit https://www.arduino.cc. For information
on how to use the Raspberry Pi to create and upload programs to the
Arduino, refer to http://www.instructables.com/id/Arduino-
On-Pi/ or https://www.youtube.com/watch?v=wCxQrW96jTM.

7. Connect the GND wire to one of the GND pins on the Arduino. Then,
connect the other wire to pin 9 on the Arduino. These connections should
look similar to the following picture:

8. The final step is to get the code to send the correct commands to the Arduino
board. The code for this book is available in the PacktPub code download
section or at http://playground.arduino.cc/Main/RoboSapienIR. This
Arduino code takes an input from the Serial Monitor, in this case a USB
connection from the Raspberry Pi Zero and turns it into the appropriate
command for the WowWee robot. Once you have uploaded the code to the
Arduino, either by using an external PC or a Raspberry Pi Zero, you can
use the Arduino IDE's Serial Monitor capability to send individual letter
commands and the robot should respond to these commands.

https://www.arduino.cc
http://www.instructables.com/id/Arduino-On-Pi/
http://www.instructables.com/id/Arduino-On-Pi/
https://www.youtube.com/watch?v=wCxQrW96jTM
http://playground.arduino.cc/Main/RoboSapienIR

Chapter 6

[129]

If you are unfamiliar with the Arduino IDE application, Arduino
is well documented at https://www.arduino.cc/ which
includes instructions on how to upload the code and use the Serial
Monitor to communicate with the Arduino.

Now that the robot works, you can add the following Python program to send
the commands:

To run this program, type python argControl.py f and the robot will respond
to that command. To make this program executable without the Python command,
type chmod +x argControl.py and you will be able to run the program by typing
./argControl.py f. You'll need this later when you want to run this program from
your voice control program.

Giving your robot voice commands
Now that your robot knows how to respond to the commands from the Python
program, you can add the ability to your robot to respond to voice commands.
You'll also make your robot speak, which will make the robot more interactive.

https://www.arduino.cc/

Adding Voice Recognition and Speech – A Voice Activated Robot

[130]

To add these capabilities to your robot, you need to add some new hardware. This
project requires a USB microphone and speaker adapter. You need the following
three pieces of hardware:

• A USB device to be able to plug in a microphone and speaker; one that works
well is Sabrent USB External Stereo Sound Adapter for Windows and Mac,
as shown here:

• A microphone that can plug into the USB device; any such device might
work, like the one shown here:

https://www.amazon.com/gp/product/B00IRVQ0F8/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00IRVQ0F8/ref=oh_aui_search_detailpage?ie=UTF8&psc=1

Chapter 6

[131]

• A powered speaker that can plug into the USB device; any device that can
plug into your USB adapter would work, such as something similar to what
is shown here:

Fortunately, these devices are inexpensive and widely available. Make sure that
the speaker is powered because your board will generally not be able to drive a
passive speaker with enough power for your applications. The speaker can use
either internal battery power or can get its power from a USB connection.

Now, we move on to getting the Raspberry Pi Zero to access these devices. You can
follow these instructions in either of the two following ways:

• If you are still connected to the display, keyboard, and mouse, log in to the
system and use the GUI by opening a terminal window

• If you are only connected through LAN, you can do all this by using an SSH
terminal window; as soon as your board indicates that it has power, open up
an SSH terminal window using PuTTY or any similar terminal emulator

Adding Voice Recognition and Speech – A Voice Activated Robot

[132]

Plug the devices into a USB port. Once the terminal window comes up, type
cat /proc/asound/cards. You will get the following response:

There are two possible audio devices that you can use. The first is the internal
Raspberry Pi audio, which is connected to the audio port, and the second is the
USB audio plugin. You could use the USB audio plugin to record the sound and the
Raspberry Pi for the audio output to play the sound, though it is easier to just use the
USB audio plugin to create and record sound.

Firstly, you need to play some music to test whether the USB sound device is
working or not. You need to configure your system to search for your USB audio
plugin and use it as the default plugin to play and record sound. To do this, you
need to add a couple of libraries to your system. The first libraries are the Advanced
Linux Sound Architecture (ALSA) libraries. These will enable the sound on the
Raspberry Pi if you perform the following steps:

1. Install two libraries that are associated with ALSA by typing sudo apt-get
install alsa-base alsa-utils.

2. Then, install those files that help to provide the sound library by typing sudo
apt-get install libasound2-dev.

Chapter 6

[133]

You'll use an application named alsamixer to control the volume of the input and
output of your USB sound card. To do this, perform the following steps:

1. Type alsamixer at the command prompt. You will see a screen similar to the
following screenshot:

2. Press F6 and select your USB sound device by using the arrow keys.
This is demonstrated in the following screenshot:

Adding Voice Recognition and Speech – A Voice Activated Robot

[134]

3. C-Media USB Audio Device is my USB audio device. You should now be
able to see a screen that looks similar to the following screenshot:

4. You can use the arrow keys to set the volume for both the speakers and the
microphone. Use the M key to un-mute the microphone. In the preceding
screenshot, MM is mute and oo is un-mute.

5. Let's make sure that our system knows about our USB sound device.
At the command prompt, type aplay –l. You should now be able to
see the following screenshot:

Chapter 6

[135]

If this does not work, try sudo aplay –l. You need to add a file to your home
directory called .asoundrc. This will be read by your system and used to set your
default configuration. To do this, perform the following steps:

1. Open the file named .asoundrc using the editor of your choice.
2. Type pcm.!default sysdefault:Set. Set is the variable that appears right

after card 1: in the output of the aplay –l command.
3. Save the file. The file should appear as follows:

This will tell the system to use your USB device as the default. Reboot your system.

Adding Voice Recognition and Speech – A Voice Activated Robot

[136]

Now, you can play some music. To do this, you need a sound file and a device to
play it. You can copy a simple .wav file to your Raspberry Pi Zero. If you are using a
Linux machine as your host, you can also use the scp command from the command
line to transfer the file. You can download music onto the Raspberry Pi Zero by using
a web browser if you have a keyboard, mouse, and display connected. You use the
application named aplay to play sound. Type aplay Dance.wav to see whether you
can play music using the aplay music player. You will see the result (and hopefully
hear it), as shown in the following screenshot:

If you don't hear any music, check the volume level on alsamixer and the speaker
power cable; aplay can be a bit finicky about the types of file it accepts, so you may
be required to try different .wav files until aplay accepts one. One more thing to
try, if the system doesn't seem to know about the program, is to type sudo aplay
Dance.wav.

Now that you can play sound, you can also record sound. To do this, you have to use
the arecord program. At the prompt, type arecord -d 5 -r 48000 test.wav. This
records the sound at a sample rate of 48000 Hz per 5 seconds. Once you have typed
the command, either speak into the microphone or make some other recognizable
sound. You will see the following output in the terminal:

Chapter 6

[137]

Once you have recorded some audio, stop the recording by pressing Ctrl + C. Once
you have created the file, play it with aplay. Type aplay test.wav and you should
be able to hear the recording. If you can't hear your recording, check alsamixer to
make sure that your speakers and microphone are both un-muted.

Now you can play music or other sound files using your Raspberry Pi. You can
change the volume of your speaker and record your voice or other sounds on the
system. You're now ready for the next step.

Using eSpeak to allow your robot to
respond with an audible voice
Sound is an important tool in our robotic toolkit but you will want to do more
than just play music. Let's make our robot speak. You're going to start by enabling
eSpeak, an open source application that provides us with a computerized voice. It is
a voice generation application. To get this free functionality, download the eSpeak
library by typing sudo apt-get install espeak at the prompt. The download
may take a while but the prompt will reappear when it is complete. Now, let's see if
the Raspberry Pi Zero has a voice. Type the espeak hello command. The speaker
should emit "hello" in a computer-generated voice. If it does not, check the speakers
and the volume level.

Adding Voice Recognition and Speech – A Voice Activated Robot

[138]

Now that we have a computer-generated voice, you may want to customize it.
eSpeak offers a complete set of customization features, including a large number of
languages, voices, and other options. To access these, you can type in the options
at the command-line prompt. For example, type in espeak -v +f3 hello and you
should be able to hear a female voice. You can even add a Scottish accent by typing
espeak –v en-sc +f3 hello.

There are a lot of choices with respect to the voices that you can use with eSpeak.
This depends on your own preferences but you might like a female voice with
an English accent. Feel free to play around and choose your favorite voice. Then,
edit the default file to set it to this voice. This default file is in the home directory
of eSpeak. However, don't expect to get the kinds of voice that you hear from
computers in the movies; those are actors and not computers. However, one day, we
will hopefully reach a stage when computers will sound a lot more like real people.

Using pocketsphinx to accept your voice
commands
Now that your robot can talk, you'll also want it to obey voice commands. This
section shows you how to add speech recognition to your robotic projects. This isn't
nearly as simple as the speaking part but, thankfully, you have some significant
help from the open source development community. You are going to download a
set of capabilities named pocketsphinx, which will allow our project to listen to
our commands.

The first step is downloading the pocketsphinx software. Unfortunately, this is not
quite as user-friendly as the eSpeak process, so follow these steps carefully. There
are two ways to do this. If you have a keyboard, mouse, and display connected or
want to connect through vncserver, you can do this graphically by performing the
following steps:

1. Go to the Sphinx website hosted by Carnegie Mellon University (CMU) at
http://cmusphinx.sourceforge.net. This is an open source project that
provides you with speech recognition software. With our smaller embedded
system, we will use the pocketsphinx version of this code.

http://cmusphinx.sourceforge.net

Chapter 6

[139]

2. You will need to download two pieces of software—sphinxbase and
pocketsphinx. Select the DOWNLOAD option at the top of the page and
then find the latest version of both of these packages. Download the .tar.gz
versions of the packages and move them to the /home/pi directory of your
Raspberry Pi.

Another way to do this is to use wget directly from the command prompt of the
Raspberry Pi. If you want to do it in this way, perform the following steps:

1. To use wget on your host machine, find the link to the file that you wish to
download. In this case, go to the Sphinx website hosted by CMU at http://
cmusphinx.sourceforge.net. This is an open source project that provides
you with the speech recognition software. With your smaller embedded
system, you will use the pocketsphinx version of this code.

2. You will need to download two pieces of software, namely sphinxbase
and pocketsphinx. Select the DOWNLOAD option at the top of the page
and then find the latest version of both these packages. Right-click on the
sphinxbase-0.8.tar.gz file (as long as 0.8 is the latest version) and select
Copy link location. Now open a PuTTY window in your Raspberry Pi and,
after logging in, type wget and paste the link that you just copied. This
will download the .tar.gz version of sphinxbase. Now, follow the same
procedure for the latest version of pocketsphinx.

Before you build these, you need another library. This library is called Bison.
This is a general purpose, open source parser that is used by pocketsphinx.
To get this package, type sudo apt-get install bison.

http://cmusphinx.sourceforge.net
http://cmusphinx.sourceforge.net

Adding Voice Recognition and Speech – A Voice Activated Robot

[140]

Once everything is downloaded and the libraries are installed, you can untar and
build pocketsphinx. To unpack and build the sphinxbase module, type sudo tar
–xzvf sphinxbase-0.y.tar.gz, where y is the version number, which in this
example is 8. This should unpack all the files from the archive into a directory
named sphinxbase-0.8. Now, type cd sphinxbase-0.8. The listing of the
files should look something like the following screenshot:

To build the application, start by issuing the sudo ./configure --enable-fixed
command. This command checks whether or not everything is okay with the system
and then configures a build.

Now you are ready to build the sphinxbase codebase. This is a two-step process,
which is as follows:

1. Type sudo make and the system will build all the executable files.
2. Type sudo make install to install all the executables onto the system.

Chapter 6

[141]

Now, you need to make the second part of the system—the pocketsphinx code. Go
to the home directory and decompress and unarchive the code by typing tar -xzvf
pocketsphinx-0.8.tar.gz. Now, the files will be unarchived and you can build the
code. Installing these files is a three-step process, as follows:

1. Type cd pocketsphinx-0.8 to go to the pocketsphinx directory and then
type sudo ./configure to check whether or not you are ready to build
the files.

2. Type sudo make and wait for everything to build.
3. Type sudo make install.

Other additions to our library installations will be useful later if you
are going to use the pocketsphinx capability with Python as the coding
language. You can install Python-Dev using sudo apt-get install
python-dev. Similarly, you can get Cython using sudo apt-get
install cython. You can also choose to install pkg-config, a utility
that sometimes helps in dealing with complex compiles. Install it by using
sudo apt-get install pkg-config.

Once the installation is complete, you need to let the system know where your files
are. To do this, use your favorite editor and change the /etc/ld.so.conf file by
adding a line to the file so that it looks as follows:

Adding Voice Recognition and Speech – A Voice Activated Robot

[142]

Type sudo /sbin/ldconfig and the system will be aware of your pocketsphinx
libraries. Now that everything is installed, you can try out the speech recognition.
Reboot the system and type cd /home/pi/pocketsphinx-0.8/src/programs to go
to a directory to try a demo program. Then, type ./pocketsphinx_continuous. For
some reason, I had to type sudo ./pocketsphinx_continuous, allow it to fail, and
then type ./pocketsphinx_continuous to make it work. This program takes input
from the microphone and turns it into speech. After running the command, you'll get
a lot of irrelevant information and then you will see the following screenshot:

The INFO and Warning statements come from the C or C++ code and are there for
debugging purposes. Initially, they will warn you that they cannot find your Mic
and Capture elements but, when your Raspberry Pi finds them, it will print out
READY..... If you have set things up as described previously, you are ready to give
your Raspberry Pi a command. Say "hello" into the microphone. When it senses
that you have stopped speaking, it will process your speech and, after giving lots
of irrelevant information, it will eventually show the commands, as shown in the
following screenshot:

Chapter 6

[143]

Notice the 000000000: hello command. It recognized your speech! You can try
out other words and phrases too. The system is very sensitive so it may pick up
background noise. You will also see that it is not very accurate. We'll deal with
this in a moment. To stop the program, press Ctrl + C.

There are two ways to make your voice recognition more accurate. One is to train the
system to understand your voice more accurately. This is rather complex but if you
want to know more, go to the CMU pocketsphinx, website which was mentioned
earlier in the chapter.

The second way to improve accuracy is to limit the number of words that your
system uses to determine what you are saying. The default has literally thousands
of word possibilities, so pocketsphinx may choose the wrong word if the two words
are similar in sound. To avoid this, you can make your own dictionary to restrict the
words that pocketsphinx has to choose from. To create your own dictionary, follow
the instructions at http://cmusphinx.sourceforge.net/wiki/tutorialdict.

Your system can now understand your voice commands! In the next section of this
chapter, you'll learn how to use this input to create a response.

http://cmusphinx.sourceforge.net/wiki/tutorialdict

Adding Voice Recognition and Speech – A Voice Activated Robot

[144]

Interpreting commands and initiating
actions
Now that the system can both hear and speak, you'll want to provide the robot with
the ability to respond to your speech and execute commands based on the speech
input. Next, you're going to configure the system to respond to simple commands.

In order to respond, we're going to edit the continuous.c code in the
/home/pi/src/programs directory. We could create our own C file but this
file is already set up in the make system and is an excellent starting point.
You can save a copy of the current file as continuous.c.old so that you can
always go back to the starting program if required. Then, you need to edit the
continuous.c file. It is very long and a bit complicated. However, you are looking
for a specific section in the code, which is shown in the following screenshot. Look
for the /* Exit if the first word spoken was GOODBYE */ comment line:

Chapter 6

[145]

In this section of the code, the word has already been decoded and is held in the hyp
variable. You can add the code here in order to make your system do things based
on the value associated with the word that we decoded. Firstly, let's try to add the
ability to respond to hello and goodbye commands to see whether or not we can get
the program to respond to these commands. You need to make changes to the code
in the following manner:

1. Find the /* Exit if the first word spoken was GOODBYE */ comment
2. In the statement if (strcmp(word, "goodbye") == 0), change word to

hyp and goodbye
3. Insert brackets around the break; statement and add the system("espeak"

\"good bye\""); statement just before the break; statement
4. Add the other else if statement to the clause by typing else if

(strcmp(hyp, "hello") == 0). Add brackets after the else if statement
and, inside the brackets, type system("espeak \"hello\"");

The file should now look as follows:

Adding Voice Recognition and Speech – A Voice Activated Robot

[146]

Now you need to rebuild your code. As the make system already knows how to build
the pocketsphinx_continuous program, it will rebuild the application if you make
a change to the continuous.c file at any point. Simply type sudo make and the file
will compile and create a new version of pocketsphinx_continuous. To run your
new version, type ./pocketsphinx_continuous. Make sure that you type ./ at the
start. Again, I had to type sudo ./pocketsphinx_continuous, allow it to fail, and
then type ./pocketsphinx_continuous to make it work.

If everything was set up correctly, saying "hello" should result in a response of
"hello" from your Raspberry Pi. Saying "goodbye" should elicit a response of
"goodbye" and also shut down the program. Note that the system command can
be used to run any program that runs from a command line. Now you can use this
program to start and run other programs based on the commands. In this case, you
need to change the code shown to call your Python code to issue the commands to
the robot, as shown in the following screenshot:

In this case, you hook up only two of the very many commands that your robot can
respond to; you can add the rest of the commands to your continuous.c file by
using the same technique. Now, you can give your robot voice commands and it will
obey them! Using the directions from the earlier section of this chapter, you can also
control your robot remotely using single character commands and add a webcam.
You have your very own robotic servant!

Chapter 6

[147]

Summary
In this chapter, you've learned about the basics of hacking a toy robot using a
Raspberry Pi. Feel free to experiment; you can see how easily you can play all
sorts of games with your new toys. In the next chapter, you'll learn how to build
a remote control vehicle that can go into a room and display what it sees back to a
central location.

[149]

Adding Raspberry Pi Zero to
an RC Vehicle

You've now built robots that can roll, walk, and respond to voice commands.
In this chapter, you'll modify an RC car to add Raspberry Pi Zero to control the
vehicle. Additionally, you'll add a webcam so that you can see what your car is
seeing remotely.

In this chapter, you'll learn the following topics:

• How to modify an Xmods RC car using Raspberry Pi Zero
• How to set break into the control circuitry of the car and use the Raspberry Pi

to control it
• How to use wireless communication to add remote control to the car
• How to add a webcam so you can control your car via First Person

View (FPV)

Adding Raspberry Pi Zero to an RC Vehicle

[150]

Configuring and controlling an RC car
with Raspberry Pi Zero
In this project, you'll be working on a simple RC car, similar to the one shown here:

This particular car is an Xmods car, originally sold by Radio Shack. However, the
best place to get them now is eBay. The advantage of this particular set is that the
inputs to the drive train and steering are very easy to access.

The following image shows the car with its center control mechanism exposed:

Chapter 7

[151]

There are two connections that you will want direct access to. The first is the drive
motor, and the second is the steering mechanism. For this particular model of RC car,
the drive mechanism is in the rear. What you are normally looking for is two wires
that will directly drive the DC motor of the car. In this system, there is a connector in
the rear of the car; it looks similar to the following image:

Adding Raspberry Pi Zero to an RC Vehicle

[152]

In the main control section of the car, you can see that there is a connector that plugs
into these two wires, in order to control the speed of the car, as shown here:

Remove this plug and these wires; you'll use Raspberry Pi Zero and a motor
controller to provide the voltage to the drive system of the car. The motor will run
faster or slower based on the voltage that is applied to these wires and the polarity
of the voltage will determine the direction. Raspberry Pi Zero will need to provide a
positive or negative 6-volt signal to control the speed and direction of the car.

You'll also need to replace the control signals that go to the front of the car for the
steering. This is a bit more difficult. The following is the connector that goes to the
front of the car:

Chapter 7

[153]

The five-pin connector that comes from the control module is shown in the
following image:

Adding Raspberry Pi Zero to an RC Vehicle

[154]

The trick is to determine how the wires control the steering. One way to determine
this is by opening up the unit. This is how it looks from inside:

As you can see in the preceding image, the blue and yellow wires are attached to
a DC motor, and the orange, brown, and red wires are attached to another control
circuit. The motor will drive the wheels left or right, the polarity of the voltage will
determine the direction, and its magnitude will cause the wheels to turn more or less
sharply. The orange, brown, and red wires are interesting, as their purpose is a bit
difficult to discover.

To do this, I used a voltmeter and an oscilloscope. The orange and brown wires are
straightforward; they are 3.5 volts and GND, respectively. The red wire is a control
wire; the signal is a Pulse Width Modulation (PWM) signal. It is a square wave
at 330 Hz and 10 percent duty cycle, and it enables the control signal. Without the
signal, the turning mechanism is not engaged. Now that you understand the signals
that are used in the original system to control the car, you can replicate those with
Raspberry Pi.

To control the steering, Raspberry Pi Zero needs to provide a 3.3-volt DC signal, a
GND signal, a 330 Hz, 3.3-volt PWM signal, and the +/- 6-volt drive signal to the
turning mechanism. To make these available, you can use the existing cables, solder
some additional cable length and use some shrink-wrap tubing to create a new
connector with the connector that is available in the car:

Chapter 7

[155]

You'll also need access to the rear wheel compartment of your car to drive the two
rear wheels. The following is how the access will look:

Adding Raspberry Pi Zero to an RC Vehicle

[156]

You'll also need to connect the battery power to Raspberry Pi Zero. Here is the
modified connection to get the battery power from the car:

To control the car, you'll need to provide each of the control signals. The + or - 6-volt
signals cannot be sourced directly by Raspberry Pi Zero. You'll need some sort of a
motor controller to source the signal to control the rear wheel drive of the car and the
turning mechanism of the car. The simplest way to provide these signals is to use a
motor shield, an additional piece of hardware that is installed on top of Raspberry Pi
Zero and can source the voltage and current to power both of these mechanisms. The
RaspiRobot Board V2 you used in Chapter 4, Building and Controlling a Simple Wheeled
Robot, can provide these signals, as shown in the following image:

Chapter 7

[157]

Specifics on the board can be found at
http://www.monkmakes.com/?page_id=698.

The board will provide you with two key signals to your RC car, the drive signal and
the turn signal. You'll need one more additional signal, the PWM signal that enables
the steering control. The following are the steps to connect Raspberry Pi to the board:

1. First, connect the battery power connector to the power connector on the
board, as shown in the following image:

http://www.monkmakes.com/?page_id=698

Adding Raspberry Pi Zero to an RC Vehicle

[158]

2. Next, connect the rear drive signal to the motor 1 connectors on the board,
as in the following image:

3. Connect the front drive connector to the motor 2 connectors on the board,
as shown in the following image:

Chapter 7

[159]

4. Connect the 3.3-volt and GND connectors to the General Purpose Input/
Output (GPIO) pins of Raspberry Pi. Here is a layout of these pins:

5. You'll use Pin1 3.3V for the 3.3-volt signal and Pin 9 GND for the ground
signal. You'll connect one of the GPIO pins so that you can create the 320 Hz,
10 percent duty cycle signal to enable the steering. Connect GPIO pin 18, pin
12, as shown in the following image:

Adding Raspberry Pi Zero to an RC Vehicle

[160]

Now the hardware is connected.

Controlling the RC car in Python
The hardware is ready, now you can access all this functionality from Raspberry Pi
Zero. First, install the library associated with the control board, found at
http://www.monkmakes.com/?page_id=698 and perform the following steps:

1. Run the command wget https://github.com/simonmonk/
raspirobotboard2/raw/master/python/dist/rrb2-1.1.tar.gz.
This will retrieve the library.

2. Then, run tar -xzf rrb2-1.1.tar.gz. This will unarchive the files.
3. Type cd rrb2-1.1. This will change the directory to the location of the files.
4. Type sudo python setup.py install. This will install the files.

Now you'll create some Python code that will allow you to access both the drive
motor and the steering motor. The code will look similar to the following screenshot:

http://www.monkmakes.com/?page_id=698

Chapter 7

[161]

The specifics on the code are as follows:

• import RPi.GPIO as GPIO: This will import the RPi.GPIO library, allowing
you to send out a PWM signal to the front steering mechanism.

• import time: This will import the time library, allowing you to use the
time.sleep(number_of_milliseconds), which causes a fixed delay.

• from rrb2 import *: This will import the rrb2 library, allowing you to
control the two DC motors. The rrb2 is the library you just downloaded
from GitHub.

• pwmPin = 18: This will set the PWM pin to GPIO pin 18, which is physical
pin 12 on the Raspberry Pi.

• dc = 10: This will set the duty cycle to 10 percent on the PWM signal.
• GPIO.setmode(GPIO.BCM): This will set the definition mode in the RPi.GPIO

library to the BCM mode, allowing you to specify the GPIO numbers of the
PWM signal.

• GPIO.setup(pwmPin, GPIO.OUT): This will set the PWM pin to an output so
that you can drive the control circuitry on the steering.

• pwm = GPIO.PWM(pwmPin, 320): This will initialize the PWM signal on the
proper pin and set the PWM signal to 320 Hz.

• rr = RRB2(): This will create an instance of the motor controller.
• pwm.start(dc):This will start the PWM signal.
• rr.set_led1(1): This will light LED 1 on the motor controller board.
• rr.set_motors(1, 1, 1, 1):This will set both the motors to move so that

the vehicle goes in the forward direction. This command will allow you to
set the motors to forward or reverse and set it at a specific speed. The first
number is the speed of motor 1 and goes from 0 to 1. The second number
is the direction of motor 1, where 1 is forward and 0 is reverse. The third
number is the speed of motor 2, which also goes from 0 to 1, and the fourth
number is the reverse and forward setting of the second motor, either 1 or 0.

• print("Loop, press CTRL C to exit"): This will instruct the user how to
stop the program.

• while 1: This will keep looping until Ctrl + C is pressed.
• time.sleep(0.075): Causes the program to wait for 0.075 seconds.
• pwm.stop(): This will stop the PWM signal.
• GPIO.cleanup(): This will clean up the GPIO driver and prepare for

shutdown.

Adding Raspberry Pi Zero to an RC Vehicle

[162]

Now you can run the program by typing sudo python xmod.py. When you run
this, the LED 1 on the control board should turn on, the rear wheels should move
in the forward direction, and the steering should turn. This confirms that you have
connected everything correctly. To make this a bit more interesting, you can add
more dynamic control of the motors by adding some control code. The following is
the first part of the Python code:

Before you start, you may want to copy your Python code into a new file; you can
call it xmodControl.py. In this code, you'll have some additional import statements;
these will allow you to sense key presses from the keyboard without hitting the enter
key, this will make the real-time interface seem more real time. The getch() function
senses the actual key press.

The rest of this code will look similar to the previous program. Now, the second part
of this code is as follows:

Chapter 7

[163]

The second part of the code is a while loop that takes the input and translates it into
commands for your RC car, going forward and backward and turning right and left.
This program is quite simple; you'll almost certainly want to add more commands
that provide more ways to control the speed and direction.

Accessing the RC car remotely
You can now control your RC car, but you certainly want to do this without any
connected cables. This section will show you how to add a wireless LAN device so
that you can control your car remotely. In Chapter 1, Getting Started with Raspberry Pi
Zero, you learned how to access Raspberry Pi Zero from a host computer. However,
for this to work you need your Raspberry Pi Zero to be connected to a network,
either with a LAN cable or a wireless network. What if you want to drive your car
where there is no network, but still connect to it? You can do this by making your
Raspberry Pi Zero a wireless access point.

Adding Raspberry Pi Zero to an RC Vehicle

[164]

Setting up Raspberry Pi Zero as a WLAN access point depends upon the USB WLAN
adapter you choose; see http://elinux.org/RPI-Wireless-Hotspot for some of
the devices supported and how to configure them. I chose the Edimax USB WLAN
adapter, pictured here:

\

This device can be configured using the script found at http://blog.sip2serve.
com/post/48899893167/rtl8188-access-point-install-script. Here are
the steps:

1. Type wget https://dl.dropboxusercontent.com/u/1663660/scripts/
install-rtl8188cus.sh. This gets the script content.

2. Type sudo chown root:root install-rtl8188cus.sh. This changes the
owner so that you can install the script.

3. Type sudo chmod 755 install-rtl8188cus.sh. This changes the script's
executable permission so you can execute it.

4. Finally, type sudo ./install-rtl8188cus.sh to run the script. This runs
the script and configures the device. You will be asked for the name you
want to use for the access point and the password.

http://elinux.org/RPI-Wireless-Hotspot
http://blog.sip2serve.com/post/48899893167/rtl8188-access-point-install-script
http://blog.sip2serve.com/post/48899893167/rtl8188-access-point-install-script

Chapter 7

[165]

This will pause and ask you if you want to continue to set up. Press y.

Adding Raspberry Pi Zero to an RC Vehicle

[166]

Now, you can connect your computer, tablet, or cell phone to the wireless access
point. Using a terminal emulator program, like PuTTY, you can use the SSH protocol
to access your device as described in Chapter 1, Getting Started with Raspberry Pi Zero.
You can then execute your vncserver and run a vncviewer program on your
remote device.

Connecting a webcam
Now you are ready to observe the output of a USB webcam connected to your car.
This is quite straightforward; simply plug in a USB webcam and download a video
viewer. One such video viewer that works well is guvcview. To install this, type
sudo apt-get install guvcview.

With all these tools installed, you can now run vncview. When you are viewing the
graphical screen of Raspberry Pi Zero type guvcivew –r 2 and you will be able to
see the video from the webcam. You can control your RC car remotely by running
the xcmodControl.py program that you wrote earlier. The screen will look similar
to the following screenshot:

Chapter 7

[167]

You will notice that as you adjust the resolution down, the update rate goes up; this
is related to the size of the image. There are a lot of additions that you can make
to your Raspberry Pi controlled car, such as adding the joystick control or more
autonomy. However, let's move on to the next project.

Summary
Now you know how to work with Raspberry Pi to add its capability to an existing
piece of hardware, in this case an RC car. In the next chapter, you'll learn how to use
Raspberry Pi Zero to build a robot that can play rock, paper, or scissors.

[169]

Playing Rock, Paper,
or Scissors with

Raspberry Pi Zero
You've now built several projects with Raspberry Pi Zero. Now, you'll take some of
these capabilities and add it to a new project, such as the ability to see and determine
what is going on around you using a USB webcam and an open source library called
OpenCV. In this project, you'll control a robotic hand to play the classic decision-
making game; rock, paper, or scissors.

In this chapter, you will build a basic robotic hand and then use it to play rock,
paper, or scissors. In this chapter, you will learn:

• How to use Raspberry Pi Zero to control servos that will control a
robotic hand

• How to add a USB webcam to the project to "see" the world around you
• How to use OpenCV, an open source image processing library, to determine

whether the human opponent is showing rock, paper, or scissors

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[170]

A robotic hand
In this chapter, you'll build a human hand that has four fingers, a thumb, and a
rotating wrist. There are actually several possible robotic hand configurations that
you can purchase or build yourself. If you'd like to purchase an already 3D printed
hand, my personal favorite is the hand that was designed by Christopher Chappelle
and Easton LaChappelle, available already 3D printed at http://www.shapeways.
com/product/Z5CZ2RKLY/3d-printed-hand-right?li=search-results-
1&optionId=42512474. Here is an image of the hand:

If you have access to a 3D printer, you can also download and print the hand
yourself. Here is the link: https://www.thingiverse.com/thing:288856. Once
you have assembled the hand, you'll need to add the servos to control the hand and
the wrist. To control the hand, you'll pull on five separate fishing lines that come out
of the hand. Here is an image of those fishing lines:

http://www.shapeways.com/product/Z5CZ2RKLY/3d-printed-hand-right?li=search-results-1&optionId=42512474
http://www.shapeways.com/product/Z5CZ2RKLY/3d-printed-hand-right?li=search-results-1&optionId=42512474
http://www.shapeways.com/product/Z5CZ2RKLY/3d-printed-hand-right?li=search-results-1&optionId=42512474
https://www.thingiverse.com/thing:288856

Chapter 8

[171]

The hand is normally fully open. When you pull on the lines, each of the digits of the
hand closes. When you release the lines, rubber bands on the back of each joint force
the fingers and thumb back open. You'll use the servos to control the fingers and
thumb. For this project, you'll only need three states: the fully-closed hand (rock),
the fully-open hand with the sideways wrist (paper), and the thumb, ring finger and
little finger closed with the index and pointer finger fully open (scissors).

Here is an image of how to connect the fishing lines to a servo:

Connect each of the digits to a servo, and then connect the entire hand to a bracket;
this will act as the wrist. You'll also connect this to a servo that can turn the wrist.

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[172]

Moving the robotic hand
In order to move the servos, you'll use a servo controller similar to the one
introduced in Chapter 5, Building a Robot That Can Walk, to control six servos that
will control the fingers, thumb, and wrist. As in Chapter 5, Building a Robot That
Can Walk, the servo controller you are going to use for this project is a simple servo
motor controller using the USB from Pololu. However, since you only need to
control five servos, you can order the six-servo controller version available at
https://www.pololu.com. Here is an image of the unit:

Make sure you order the assembled version. This piece of hardware will turn the
USB commands from the Raspberry Pi Zero into signals that control your servo
motors. There are two connections that you'll need to make to the servo controller
to get started: the first to the servo motors and the second to a power source.

https://www.pololu.com

Chapter 8

[173]

First, connect the servos to the controller. In order to be consistent, let's connect
your six servos to the connections marked 0 through 5 on the controller, using
this configuration:

Servo connector Servo
0 Thumb
1 Index finger
2 Middle finger
3 Ring finger
4 Little finger
5 Wrist

Here is an image of the back of the controller; this will tell us where to connect
our servos:

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[174]

Now, you need to connect the servo motor controller to a power source. For this
project, you can use a battery but you can also use a dedicated power supply. Here
is an image of a dedicated power supply, available at most on-line electronics outlets
that can provide approximately 3 amps at 6 volts, which you'll need for the project:

The connections on the power supply are clearly marked; you'll connect the 6-volt
power supply and GND connections to the connections marked BAT on the servo
controller.

Be very careful with this kind of power supply, never work on the wiring
connected to the supply when the power supply is plugged in, and it is
best to place the power supply in a protective enclosure after you have
completed all the connections.

Your system is now functional. Now, you'll connect the motor controller to your
personal computer to check to see if you can communicate with it as shown in
Chapter 5, Building a Robot That Can Walk. To do this, connect a mini USB cable
between the servo controller and your personal computer.

Now, you can use the sliders on the Pololu Maestro Control Center to actually
control the servos. Make sure that servo 0 moves the thumb, 1 the index finger
front middle servo, 2 the right front upper servo, and so on. You can also use this
to calibrate the servos.

Set all of the servos so that the slider is on one side of the slider bar, as you will want
this to be the open setting. The setting on the other side of the slider bar will pull the
fishing line, and thus move the associated finger or thumb to the closed setting. Now,
unscrew the servo horn on each servo until the servos are positioned so that the open
hand is at one end of the servo's movement. When the servos move to the other end
of the range, the hand should close.

Chapter 8

[175]

Your hand is now ready to actually do something. Now, you'll need to send the
servos the electronic signals they need to signal rock, paper, or scissors.

Connecting the servo controller to the
Raspberry Pi Zero
You've checked the servo motor controller and the servos; you'll now connect the
motor controller to the Raspberry Pi Zero and make sure you can control the servos
from it. Remove the USB cable from the PC and connect it to the Raspberry Pi Zero.

Let's now focus on the motor controller by downloading the Linux code from
Pololu at www.pololu.com/docs/0J40/3.b. Perhaps the best way is to log into
your Raspberry Pi Zero through PuTTY, then type wget http://www.pololu.
com/file/download/maestro-linux-100507.tar.gz?file_id=0J315. Then,
move the file using mv maestro-linux-100507.tar.gz\?file_id\=0J315
maestro-linux-100507.tar.gz. Unpack the file by typing tar –xzfv maestro-
linux-100507.tar.gz. This will create a directory called maestro_linux. Go to that
directory by typing cd maestro_linux and then type ls -l; you should be able to
see something similar to this:

www.pololu.com/docs/0J40/3.b

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[176]

The document README.txt will give you explicit instructions
on how to install the software. This is basically done in two steps.
First, install a set of supporting libraries by typing sudo apt-get install
libusb-1.0-0-dev mono-runtime libmono-winforms2.0-cil, then copy the
configuration file by typing sudo cp 99-pololu.rules /etc/udev/rules.d/.

Unfortunately, you can't run Maestro Control Center on your Raspberry Pi Zero,
as your version of Windows doesn't support the graphics, but you can control your
servos using the UscCmd command-line application to ensure that they are connected
and working correctly. First, type ./UscCmd --list and you should be able to see
the following:

The unit sees your servo controller. If you just type ./UscCmd, you can see all the
commands you could send to your controller:

Chapter 8

[177]

Note that you can send a servo to a specific target angle, although the target is not
in degrees, so it makes it a bit difficult to know where you are sending your servo.
Try typing ./UscCmd --servo 0, 10. The servo will move to its full angle position.
Type ./UscCmd – servo 0, 0 and it will stop the servo from trying to move. In the
next section, you'll write some Python code that will translate your angles in degrees
to the commands that the servo controller will want to see in order to move it to
specific angle locations.

If you didn't run the Windows version of Maestro Controller and
set the Serial Settings to USB Chained, your motor controller may
not respond. Rerun the Maestro Controller code and set the Serial
Settings to USB Chained.

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[178]

Creating a program on Raspberry Pi Zero
so that you can control your hand
You now know that you can talk to your servo motor controller and move your
servos. In this section, you'll create a Python program that will let you talk to your
servos to move them to specific angles.

Let's start with a simple program that will position your hand so that the servos are
set to one end of the range (which should open the hand) and then go the other end
of the range (which should close your hand). This program starts with the code you
wrote in Chapter 5, Building a Robot That Can Walk. Here is the basic code to control
the servos:

Chapter 8

[179]

Here is an explanation of the code:

• #! /usr/bin/python: This first line allows you to make this Python file
execute from the command line.

• import serial: This line imports the serial library. You need the serial
library to talk to your unit via USB.

• def setAngle(ser, channel, angle):: This function converts your
desired setting of servo and angle into the serial command that the servo
motor controller needs.

• ser = serial.Serial("/dev/ttyACM0", 9600): This opens the serial port
connection to your servo controller.

• for i in range(0, 12):: For each of the servos
• setAngle(ser, i, 90): Now you can set each servo to the middle

position. This should open your fingers half way. If your hand isn't in the
middle position, you can adjust it by adjusting the position of the servo horns
on each servo.

To access the serial port, you'll need to make sure that you have the Python serial
library. If you don't, then type sudo apt-get install python-serial. After you
have installed the serial library, you can run your program by typing sudo python
hand.py.

Once you know the angle to set the servo at the middle angle position, the settings
for the angle for each servo that opens or closes the hand will be roughly 20 degrees
on either side. Finally, you can now ask your hand to close the servos for the thumb,
ring finger, and little finger, which will be the scissors hand. You'll want a Python
function for each of the three different positions. In this case, you can use your
setAngle command to set your servos to manipulate your hand's six servos to
either do paper (everything open), rock (everything closed), or scissors (two fingers
extended, the rest closed).

Since each of these is a function, this code also has the ability to be included in a
library so that they can be used in your system with the webcam.

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[180]

Installing a USB camera on Raspberry Pi
Zero
Having vision capability is essential to your rock, paper, or scissors robot.
Fortunately, adding hardware and software for vision is both easy and inexpensive.

Connecting a USB camera is very easy. Just plug it into the USB slot. To make sure
your device is connected, type lsusb. You should be able to see this:

The following screen shows a creative webcam located at Bus 001 Device 004:
ID 041e:4095. To make sure that the system sees this as a video device, type ls
/dev/v* and you should see something similar to the following screenshot:

Chapter 8

[181]

The /dev/video0 is the webcam device. Now that your device is connected, let's
actually see if you can capture the images and video.

While many USB web cameras will work, in order to ensure
this, you may want to purchase a webcam from a major webcam
manufacturer like Logitech.

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[182]

There are several tools that can allow you to access the webcam, but a simple
program with video controls is called guvcview. To install this, type sudo apt-get
install guvcview. Once the applications are installed, you'll want to run it. To do
this, you'll need to be either connected directly to a display or connected to a remote
computer using vncviewer. Open a terminal window on Raspberry Pi and run
guvcview. You should see something similar to this:

Don't worry about the quality of the image, you'll be capturing and processing your
images inside OpenCV, a vision framework.

Chapter 8

[183]

Downloading and installing OpenCV – a
fully featured vision library
Now that you have your camera connected, you can access some amazing
capabilities that have been provided by the open source community. Open a terminal
window and type the following commands:

• sudo apt-get update: You're going to download a number of new software
packages, so it is good to make sure that everything is up to date.

• sudo apt-get install libavformat-dev: This library provides a way to
code and decode audio and video streams.

• sudo apt-get install libcv2.4 libcvaux2.4 libhighgui2.4: This
command shows the basic OpenCV libraries. Note the number in the
command. This will almost certainly change as new versions of OpenCV
become available. If 2.4 does not work, try either 3.0 or Google for the latest
version of OpenCV.

• sudo apt-get install python-opencv: This is the Python development
kit needed for OpenCV, as you are going to use Python.

• sudo apt-get install opencv-doc: This command will download the
documentation for OpenCV just in case you need it.

• sudo apt-get install libcv-dev: This command downloads the header
file and static libraries to compile OpenCV.

• sudo apt-get install libcvaux-dev: This command downloads more
development tools for compiling OpenCV.

• sudo apt-get install libhighgui-dev: This is another package that
provides header files and static libraries to compile OpenCV.

Now, type cp -r /usr/share/doc/opencv-doc/examples /home/pi/. This will
copy all the examples to your home directory.

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[184]

Now that OpenCV is installed, you can try one of the examples. Go to the /home/pi/
examples/python directory. If you do an ls, you'll see a file named camera.py. This
file has the most basic code for capturing and displaying a stream of picture images.
But before you run the code, make a copy of it, using cp camera.py myCamera.py.
Then edit the file to look similar to this:

The two lines that you'll add are the two with the cv.SetCaptureProperty; they
will set the resolution of the image to 360 by 240. To run this program, you'll need
to either have a display and keyboard connected to Raspberry Pi or use vncviewer.
When you run the code, you should see the window displayed as shown:

Chapter 8

[185]

You may want to play with the resolution to find the optimum settings for your
application. Big images are great—they give you a more detailed view of the
world—but they also take up significantly more processing power. You'll play
with this resolution more as you actually ask your system to do some real image
processing. Be careful if you are going to use vncserver to understand your system
performance, as this will significantly slow down the update rate. An image that is
twice the size (width/height) will involve four times more processing. You can now
use this capability to do a number of impressive tasks.

Gesture detection
OpenCV and your webcam can also track objects. This will be useful as you want
your project to differentiate your hand from the background. OpenCV makes this
amazingly simple by providing some high-level libraries that can help us with this
task. To accomplish this, you'll edit a file to look something similar to what is shown
in the following screenshot:

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[186]

This code makes it possible to isolate your hand. Once you have created this file and
saved it, you can run the program. Now take your target (in this case your hand) and
move it into the frame. You should see something similar to what is shown in the
following screenshot:

Note the white pixels in our threshold image showing where you hand is located.
You can add more OpenCV code that gives the actual location and size of your hand.
In the original image file of your hand, you can actually draw a rectangle around
your hand as an indicator. Edit the file to look similar to the following screenshot:

Chapter 8

[187]

Now that the code is ready, you can run it. You should see something similar to what
is shown in the following screenshot:

You can now track your hand. You can also see the x, y, length, and width relative
measures of your hand for each of the scissors, rock, or paper. Here is the rock:

Playing Rock, Paper, or Scissors with Raspberry Pi Zero

[188]

The following screen is the measure of your hand for paper:

You can add some simple code to determine if your hand is making a rock, paper, or
scissors using the ratios of x and y. In the preceding picture, you can see that the ratio
of width to height is roughly 140/80 for paper. For a rock, the ratio is going to be
roughly 85/55. For scissors, it is going to be 140/40. Here is the code for the library
that determines a rock/paper/or scissors:

Chapter 8

[189]

Now you know the state of the human opponent's hand. To complete the entire
project, you'll need to add code to make a random selection for the computer hand's
state, call the functions in the previous sections of this chapter to make the hand
move to that state, and then compare the random selection of your robot hand and
the user's hand to determine the winner. Playing rock, paper, or scissors has never
been easier!

Summary
You now have a hand that can play rock, paper, or scissors! By now you should have
quite a few different capabilities that you can add to almost any project. In the last
chapter, you'll add Raspberry Pi Zero to a quad copter to build a project that can fly.

[191]

Adding Raspberry Pi Zero to
a Quadcopter

You've had the opportunity to build lots of different types of robot, so now let's end
with the one that can be truly amazing, a robot that can fly.

Before we start, there are a number of safety warnings to be considered.
Of course, never fly near people or buildings. Also, be very careful
about flying outside your viewing range. In many countries, there are
restrictions on where and when you can fly a quadcopter. Some countries,
including the United States, require you to register your quadcopter.

It is also important to note that this chapter is not designed to be a complete step-
by-step guide to the construction of a quadcopter for flying. That would take many
chapters. This chapter is designed to get you started if you consider building a
quadcopter that can be controlled using the Raspberry Pi Zero. In this chapter,
you'll learn about the following topics:

• Building the basic quadcopter platform
• Interfacing Raspberry Pi Zero with the flight controller
• Discussing long-range communications
• Using GPS for location
• Adding autonomous flight

Adding Raspberry Pi Zero to a Quadcopter

[192]

Constructing the platform
Constructing the quadcopter hardware can be daunting; however, there are several
excellent websites that can lead you through the process, from component selection
to build details and programming and controlling your quadcopter with a radio. The
http://www.arducopter.co.uk/ website is a great place to start for those who are
new to quadcopter flight. Go to http://copter.ardupilot.com/, which is another
excellent website with lots of information.

For this project, you'll want to choose a project that uses the Pixhawk flight
controller. There are other flight controllers that are significantly less expensive,
but this particular flight controller provides easy access for Raspberry Pi Zero. Here
are some possible websites that can guide you through the construction process:
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-
the-q-brain-esc.html, http://learnrobotix.com/uavs/quadcopter-build/
pixhawk/connecting-components-pixhawk-flight-controller.html,
and http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with
-a-pixhawk-flight-controller-step-11/.

At http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-
wiring-chart/, you'll find an excellent wiring diagram of how to hook
everything up. Let's go through the steps of constructing our own quadcopter.

First, you'll need a frame. You'll be building a quadcopter of size 450 mm, one of the
least expensive frames, which is available from most online retailers, with fiberglass
arms, as shown in the following image:

http://www.arducopter.co.uk/
http://copter.ardupilot.com/
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-the-q-brain-esc.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-the-q-brain-esc.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-components-pixhawk-flight-controller.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-components-pixhawk-flight-controller.html
http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-controller-step-11/
http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-controller-step-11/
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/

Chapter 9

[193]

Now, perform the following steps to complete your quadcopter assembly:

1. The first step is to build the quadcopter as the instructions suggest.
2. The second step is to solder the four Electronic Speed Controllers (ESCs),

one to each motor, and the battery connection to the bottom plate. Here is an
image of the bottom plate:

Note the + and – connections; each connection will be soldered to all the
ESCs. The following is an image of the motor controller:

Adding Raspberry Pi Zero to a Quadcopter

[194]

The red and black wire connectors are the connectors that are soldered to
the bottom plate of the frame. The other three connectors will connect to
the motor.

3. The third step is to install the motors on the frame. You'll need motors that
are in the 1000 KV range, here is an image of such a motor:

Again, follow the instructions that came with your frame to attach the motor.
Then attach the three connections that come from the ESC to the motor.

4. One optional step is to add a landing gear set to the unit. There are many of
these available; the following is an image of one that is very sturdy:

Chapter 9

[195]

5. Now you'll install Pixhawk on the frame and connect its associated
electronics. The details are shown and described at http://copter.
ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/.
This will connect the Pixhawk to the ESCs, the battery, an RC transmitter, a
telemetry radio, and a switch that will prevent the quadcopter from flying
until you are ready.

6. Eventually, you will install four propellers on the quadcopter; however,
you will have to wait until you have calibrated the ESCs, motors, and
RC transmitter to install them. You'll need four propellers, two that are
designed to spin clockwise and another two that are designed to spin
counter-clockwise. For this quadcopter, you'll want propellers that are
10x4.7 pitches. Here is an image of one such propeller:

http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/

Adding Raspberry Pi Zero to a Quadcopter

[196]

The following is an image of the entire quadcopter using the Pixhawk
flight controller:

Note the arrows and cords arranged on the quadcopter. This is not to
make it look menacing but to protect it from running into something
and fracturing the propellers. There are commercial guards available;
however, this system also works and is less expensive.

You'll want to build your quadcopter and fly it with an RC transmitter/receiver pair;
this will allow you to get familiar with your quadcopter and how it flies, and it will
also allow you to tweak all the settings to stabilize it. Once your quadcopter is stable,
you can perform some simple autonomous flights. Let's use the mission planning
software, which runs on a remote computer.

Mission planning software
The mission planning software is available at http://planner.ardupilot.
com/. There are actually two applications available that perform similar actions,
but the Mission Planner is a good place to get familiar with how to talk with your
quadcopter from a computer program.

To do this, you'll need to make sure that you have telemetry radios connected to
the Pixhawk and the computer. This will prevent the need to directly connect to the
Pixhawk with a long USB cable. When you begin the mission planning software, you
will see the following screen:

http://planner.ardupilot.com/
http://planner.ardupilot.com/

Chapter 9

[197]

This is the basic screen. You'll then need to configure your radio's COM port and
then press the CONNECT button in the corner on the upper right-hand side of the
screen. As you move the quadcopter around, you will see the measurements change.
If you are having problems connecting to the Pixhawk, there is lot of help available
on the website.

Now that you have connected, you can actually see how your quadcopter is flying
with this application. The software communicates with the Pixhawk controller via
the MAVLink, a serial control link that comes from the software application, goes
out over the telemetry radio, is received by the telemetry radio, and is then routed
to the Pixhawk. The Pixhawk not only knows how to send information, but also
receive information.

Once the software is connected, you'll want to calibrate the RC radio connection;
this can be done through the software. You'll also want to calibrate the ESCs; refer
to http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-
electronic-speed-controllers-with-pixhawk.html for specific directions.

http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-electronic-speed-controllers-with-pixhawk.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-electronic-speed-controllers-with-pixhawk.html

Adding Raspberry Pi Zero to a Quadcopter

[198]

Now, you are ready to connect the Raspberry Pi Zero. To do this, connect
Raspberry Pi Zero to the second telemetry input on the Pixhawk, as shown
in the following image:

Chapter 9

[199]

Now that this is connected, you can access the Pixhawk from Raspberry Pi Zero
using the MAVLink. You'll need to add and configure the Raspberry Pi Zero to
complete the connection. To do this, run raspi-config and choose the 8 Advanced
Options, Configure advanced settings option, as shown in the following screenshot:

Adding Raspberry Pi Zero to a Quadcopter

[200]

Now, you'll turn off sending the serial output on boot up by selecting the A8 Serial,
Enable/Disable shell and kernel m option, as shown:

Then select the answer <No> to the following question:

Chapter 9

[201]

Now you are ready to install some additional software. To install this software,
perform the following steps:

1. Type sudo apt-get update: This updates the local package lists so that
your system can find the appropriate software.

2. Type sudo apt-get install screen python-wxgtk2.8
python-matplotlib python-opencv: This installs a graphical
package, a plotting package, and a version of OpenCV.

3. Type sudo apt-get install python-numpy: This will install NumPy,
a numerical library for Python, although you may already have it from
the previous projects that you have done.

4. Type sudo apt-get install python-dev: This is a set of files that will
allow you to develop in the Python environment.

5. Type sudo apt-get install python-pip: This is a tool that helps you to
install Python packages.

6. Type sudo pip install pymavlink: This is the set of code that implements
the MAVLink or the communication profile for the Pixhawk, in Python.

7. Type sudo pip install mavproxy: This last step installs the Unmanned
Aerial Vehicle (UAV) ground station software package for MAVLink-based
systems that are based on the Pixhawk.

Now that you have installed all the software, you can test the link. To do this,
type sudo –s; this establishes you as the superuser. Then type mavproxy.py
--master=/dev/ttyAMA0 --baudrate 57600 --aircraft MyCopter and
you will see the following:

Adding Raspberry Pi Zero to a Quadcopter

[202]

Now that the link is established, you can send commands to either set or show
parameters. For example, type param show ARMING_CHECK; it should show you
the value of the parameter, as shown in the following screenshot:

Details for all available commands can be found at http://dronecode.github.io/
MAVProxy/html/uav_configuration/index.html.

You can issue these commands directly, but you can also connect to the Pixhawk
using an interface that is similar to the Mission Planner interface, which you have
worked with earlier. To do this, you'll need to install the DroneKit code. Overall
directions and documentation for DroneKit can be found at http://python.
dronekit.io/1.5.0/guide/getting_started.html, but let's see
an example here.

First, type sudo pip install droneapi. You can download some example scripts
by typing git clone http://github.com/dronekit/dronekit-python.git.
Now cd to the dronekit-python/examples/vehicle_state directory. You'll
see the vehicle_state.py file that shows an excellent example of how to use the
MAVLink to talk with the Pixhawk to find out information, as well as set values
and issue commands.

http://dronecode.github.io/MAVProxy/html/uav_configuration/index.html
http://dronecode.github.io/MAVProxy/html/uav_configuration/index.html
http://python.dronekit.io/1.5.0/guide/getting_started.html
http://python.dronekit.io/1.5.0/guide/getting_started.html

Chapter 9

[203]

To run an example program, start the MAVLink by typing two commands: sudo –s,
and then mavproxy.py --master=/dev/ttyAMA0 --baudrate 57600 --aircraft
MyCopter. Once inside, load the API by typing module load droneapi.module.api
at the prompt. The system will then tell you whether the module is loaded. Now, run
the Python script by typing api start vehicle_state.py.

The Python code will first read in a series of parameters and then, if the quadcopter
is armed, it will also read some details about the state of the quadcopter. Details of
each command can be found at http://python.dronekit.io/guide/vehicle_
state_and_parameters.html#vehicle-information. The output will look
something similar to the following screenshot:

Now, you can look at other Python examples to see how to control your quadcopter
via Python files from Raspberry Pi Zero.

http://python.dronekit.io/guide/vehicle_state_and_parameters.html#vehicle-information
http://python.dronekit.io/guide/vehicle_state_and_parameters.html#vehicle-information

Adding Raspberry Pi Zero to a Quadcopter

[204]

You can also interface the MAVProxy system with the Mission Planner running on
a remote computer. With a radio connected to the TELEM 1 port of the Pixhawk
and your Raspberry Pi Zero connected to the TELEM 2 port of the Pixhawk, change
the MAVProxy start-up command by adding --out <ipaddress>:14550 with
ipaddress being the address of the remote computer that is running the Mission
Planner. On a Windows machine, the ipconfig command can be used to determine
this IP address.

For example, your mavproxy command might look similar to this: mavproxy.
py --master=/dev/ttyAMA0 --baudrate 57600 --out ipaddress:14550
--aircraft MyCopter. Once connected to MAVProxy, you can connect to
the Mission Planner software using the UDP connection, as shown in the
following screenshot:

Now, you can run your MAVProxy scripts and see the results on the Mission
Planner software.

Chapter 9

[205]

Summary
That's it. You now have a wide array of different robotics platforms that run with
Raspberry Pi Zero as the central controller. These chapters have just introduced you
to some of the most fundamental capabilities of your platforms; you can now explore
each and expand their capabilities. The only limit is your imagination and time.

[207]

Index
A
actions

initiating 144-146
Advanced IP Scanner

about 28
URL 28

Advanced Linux Sound Architecture
(ALSA) 132

alsamixer 133
aplay 136
Arduino

URL 128
arecord program 136

B
Bison 139
board, Raspberry Pi Zero

powering 3, 4
body kit, quadruped

URL 106

C
Carnegie Mellon University (CMU)

about 138
URL 138

commands
interpreting 144-146

compass
accessing programmatically 70-75

configuration, USB WLAN adapter
URL 164

control board, Raspberry Pi Zero
URL 92

Cython
using 141

D
Data Ready (DRDY) 70
DC motors

controlling, motor controller
board used 89-92

H-bridge interface, controlling to 80-82
Debian 9
Degrees of Freedom (DOF) 101
digital compass

connecting, to Raspberry Pi Zero 66-70
display, Raspberry Pi Zero

connecting 4-8
DroneKit

about 202
references 203
URL 202

E
Electronic Speed Controllers (ESCs)

about 193
URL 197

Emacs 37
Emacs commands

defining 38
eSpeak

about 137
used, for allowing robot to respond with

spoken voice 137, 138

[208]

F
files

creating 37-39
editing 37-39
saving 37-39

First Person View (FPV) 149
functions, importing

URL 99

G
General Purpose Input/Output (GPIO) 159
gesture detection

defining 185-189
GPIO digital voltage output

defining 53-58
guvcview 182

H
H-bridge interface

controlling, to DC motors 80-82
Hitec servos 103
host PC

Raspberry Pi Zero, accessing from 17-29

I
I2C interface

URL 66
Inter IC (I2C) bus 67
Internet access

adding 14-16

J
Jessie 9

K
keyboard, Raspberry Pi Zero

connecting 4-8

L
LED code

and Raspberry Pi Zero 59, 60

library, control board
URL 160

Light Emitting Diode (LED) 54
Linux

Raspberry Pi Zero, powering up
with 31-37

Linux commands
defining 36, 37

Lynxmotion 103

M
MAC OS X

URL 9
make system 144
Master In Slave Out (MISO) 68
Master Out Slave In (MOSI) 68
MAVLink 197
MAVProxy

reference 202
mission planning software

defining 196-204
URL 196

mobile platform
controlling programmatically, Raspberry Pi

Zero used 83-86
motor controller board

used, for controlling DC motors 89-92
motor speed

controlling, with PWM 86-89
mouse, Raspberry Pi Zero

connecting 4-8

N
nano

URL 37
Nmap

about 29
URL 29

NumPy
installing 201

O
OpenCV

about 169
downloading 183-185

[209]

installing 183-185
operating system

installing 9-14

P
path planning

URL 98
PC

and servo controller, communicating
between 110-113

Pixhawk flight controller
about 192
references 192, 195

platform
constructing 192-196

pocketsphinx
about 138
URL 143
used, for accepting voice

commands 138-143
Pololu

references 110, 115, 118
program, in Linux

creating, for controlling robot 118-121
program, on Raspberry Pi Zero

creating, for controlling hand 178, 179
PuTTY

about 18
URL 18

PWM
about 86, 102, 154
motor speed, controlling with 86-89

Python
RC car, controlling 160-163
references 40

Python 2, versus Python 3
URL 40

Python-Dev
using 141

Python programs
creating 39-41
running 39-41

Q
quadcopter flight

references 192

quadruped
assembling 104
references 121

quadruped platform
building 103-107

quadruped robot
URL 103

R
Raspberry Pi

references 128
URL 9, 10

Raspberry Pi Zero
about 1
accessing, from host PC 17-29
and LED code 59, 60
and robot, communication

between 125-129
and sonar sensor code 64, 65
digital compass, connecting to 66-70
functions, defining 46-48
GPIO capability 51-53
if statement 43, 44
libraries, in Python 48-50
modules, in Python 48-50
powering up, with Linux 31-37
programming constructs, defining 43
RC car, configuring with 150-159
RC car, controlling with 150-159
servo controller,

connecting to 114-117, 175-177
setting up 2
USB camera, installing on 180-182
used, for controlling mobile platform

programmatically 83-86
while statement 45, 46

Raspberry Pi Zero, in Python
used, for controlling vehicle 92-95

Raspbian 9
RasPiRobot Board V2

URL 89
RC car

accessing remotely 163-165
configuring, with

Raspberry Pi Zero 150-159
controlling, in Python 160-163

[210]

controlling, with Raspberry Pi Zero 150-159
RoboSapienIR

URL 128
robot

and Raspberry Pi Zero, communication
between 125-129

voice commands, giving to 129-137
robotic hand

defining 170, 171
moving 172-174
references 170

Robotshop
URL 103

S
scp 17
Secure Shell (SSH)

about 18
URL 18

serial clock (SCK) 68
Serial Monitor 128
Serial Peripheral Interface (SPI) 68
servo controller

and PC, communicating between 110-113
connecting, to

Raspberry Pi Zero 114-117, 175-177
used, for controlling servos 107-110

servo motors
working 102

servos
controlling, servo controller used 107-110

Slave Select (SS) 68
SMBus capability 73
sonar sensor

adding 61-64
and Raspberry Pi Zero 64, 65

sphinxbase 139
SPI interface

URL 68
SSH 17, 20

T
Tightvncserver 21
Torque 103

U
UART interface

URL 67
Universal Asynchronous

Receiver/Transmitter (UART) 67
Unmanned Aerial Vehicle (UAV) 201
USB camera

installing, on Raspberry Pi Zero 180-182
USB to LAN

references 16
USB WLAN adapter

URL 164

V
VNC server 17
vncserver command

reference 22
voice commands

accepting, pocketsphinx used 138-143
giving, to robot 129-137

voltage divider
reference 62

W
walking robot

building 101
webcam

connecting 166
wget

using 139
Wheeled Robot

basic platform, using 77-79
path, planning 96-99

WinSCP
about 17, 26
URL 26

wireless devices
references 14

WowWee
URL 123

WowWee Roboraptor 124
WowWee Robosapien 124

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Raspberry Pi Zero
	Setting up the Raspberry Pi Zero
	Powering the board
	Hooking up a keyboard, mouse, and display
	Installing the operating system
	Adding Internet access
	Accessing your Raspberry Pi Zero from your host PC

	Summary

	Chapter 2: Programming Raspberry Pi Zero
	Powering up Raspberry Pi Zero with Linux
	Creating, editing, and saving files
	Creating and running Python programs
	Basic programming constructs on Raspberry Pi Zero
	The if statement
	The while statement
	Working with functions
	Libraries/modules in Python

	Summary

	Chapter 3: Accessing the GPIO Pins on Raspberry Pi Zero
	The GPIO capability of Raspberry Pi Zero
	Simple GPIO digital voltage output
	Raspberry Pi Zero and LED code

	Adding a sonar sensor
	Raspberry Pi Zero and the sonar sensor code

	Connecting a digital compass to Raspberry Pi Zero
	Accessing the compass programmatically
	Summary

	Chapter 4: Building and Controlling a Simple Wheeled Robot
	The basic platform
	Controlling an H-bridge interface to the DC motors
	Controlling your mobile platform programmatically using the Raspberry Pi Zero
	Controlling the speed of your motors with PWM
	Using a motor controller board to control the DC motors
	Controlling the vehicle using the Raspberry Pi Zero in Python
	Planning your path
	Summary

	Chapter 5: Building a Robot That Can Walk
	Robots that can walk
	How servo motors work
	Building the quadruped platform
	Using a servo controller to control the servos
	Communicating between the servo controller and a PC
	Connecting the servo controller to the Raspberry Pi Zero
	Creating a program in Linux to control your quadruped
	Summary

	Chapter 6: Adding Voice Recognition and Speech – A Voice Activated Robot
	Communication between the Raspberry Pi Zero and the robot
	Giving your robot voice commands
	Using eSpeak to allow your robot to respond with an audible voice
	Using pocketsphinx to accept your voice commands
	Interpreting commands and initiating actions
	Summary

	Chapter 7: Adding Raspberry Pi Zero to an RC Vehicle
	Configuring and controlling an RC car with Raspberry Pi Zero
	Controlling the RC car in Python
	Accessing the RC car remotely
	Connecting a webcam
	Summary

	Chapter 8: Playing Rock, Paper, or Scissors with Raspberry Pi Zero
	A robotic hand
	Moving the robotic hand
	Connecting the servo controller to the Raspberry Pi Zero
	Creating a program on Raspberry Pi Zero so that you can control your hand
	Installing a USB camera on Raspberry Pi Zero
	Downloading and installing OpenCV – a fully featured vision library
	Gesture detection
	Summary

	Chapter 9: Adding Raspberry Pi Zero to a Quadcopter
	Constructing the platform
	Mission planning software
	Summary

	Index

