
1

Buffer Overflows. Protection Mechanisms.

Stack Based Buffer Overflows and
Protection Mechanisms.

Software Security
January 2008

Igor Yuklyanyuk

2

Outline

■ Buffer Overflow Introduction
■ What is a buffer overflow?
■ What is a ShellCode?
■ Exploitation
■ ASLR – Address Space Layout Randomization
■ Non-Executable Stack
■ Canaries

3

Part One

What Is a Buffer Overflow ???

4

What is a Buffer Overflow

■ A class of vulnerability caused by a bug in application
■ Most bugs in the 90's and early 00's were buffer overflows
■ May be exploited by attacker to gain control of the system

5

What is a Buffer Overflow

■ Buffer Overflow is a program condition where data is written
past allocated buffer (e.g. a string buffer)

■ Data copied past allocated buffer affects other bits of the
program

■ Buffer Overflow may occur on stack or heap portion of
memory

■ We are only concern with stack overflows
■ Not All Overflows are exploitable

6

What is a Buffer Overflow

■ Stack is a LIFO Data
Structure

■ New stack frame is Created
every function Call (runtime)

■ Execution is continued at
Return Address after
function completion

■ On x86 Stack grows
upwards while Memory
Addressing grows
Downwards

7

What is a Buffer Overflow

8

What is a Buffer Overflow

9

What is a Buffer Overflow

10

What is a ShellCode

■ Instead of breaking the program attacker wants to take control
■ ShellCode is the code that is executed upon successful attack
■ Performs specific tasks, such as shell execution (hence

ShellCode), connect to attacker controlled host, log deletion
etc.

■ Restricted in size
■ Usually must not contain null byte
■ Written in Assembly
■ Architecture specific

11

What is a ShellCode

■ Simple ShellCode executes
shell

12

What is a ShellCode

13

What is a ShellCode

■ There are null bytes in this
ShellCode

■ Null Byte is a terminating
character in C-string

■ Use simple logic; XOR
anything by itself results in
false

14

What is a ShellCode

15

What is a ShellCode

16

What is a ShellCode

17

What is a ShellCode

■ IDS/IPS may filter ShellCode
■ Alpha Numeric ShellCodes
■ ShellCode encoders
■ MosDef (Immunity)
■ Core Impact

18

Exploitation

■ Attacker may exploit a vulnerable program to escalate
privileges

■ Linux – Multiuser Operating System
■ Suid bit

19

Exploitation

20

Exploitation

21

Exploitaiton

■ We are now going to construct a buffer with our ShellCode, so
it can be referenced by a program

■ We will then find location of our ShellCode
■ Redirect EIP

22

Exploitation

23

Exploitation

24

Exploitation

■ Problems Matching Memory Address
 Time Consuming
 Very Unreliable
 ShellCode may change location depending on

platform, current environment or even bad weather
condition

 Looking for exact memory location is boring

25

Exploitation

■ NOP (No Operation) Sled
 NOP is a special instruction that is not doing anything
 Used by compilers etc
 We can use NOP Sled in order to increase the

memory range we need to hit
 We will be using the most common No Operation

instruction - 0x90

26

Exploitation

27

Exploitation

28

Exploitation

29

Exploitation

■ There are many other techniques for exploitation
■ ShellCode may be put in evnironment, argv[0], other places

within a program
■ Exploit writers should construct a reliable environment
■ One mistake may lead to a program crash, BoF exploits are

rarely used by consultants

30

Protection Mechanisms

■ Buffer Overflow existed for a while
■ There are many techniques developed to prevent exploitation

of buffer overflows
■ Most can be defeated, however a combination of protection

mechanisms provides a reasonable security

31

ASLR

■ Address Space Layout Randomization
 First implemented in PaX for Linux in 2001
 If library addresses, stack, heap etc are ALL randomized

an attacker wouldn't know where to redirect the execution
 All binaries must be recompiled as relocatable objects
 Can read more at http://pax.grsecurity.net/docs/

http://pax.grsecurity.net/docs/

32

ASLR

■ It is not perfect
 Not Everything is randomized (binaries are not

recompiled by most distributions)
 Return to Code (within programs) is possible
 Possible to brute-force if using NOP is an option
 Forked processes use the same layout as host

process
 http://www.stanford.edu/~blp/papers/asrandom.pdf

33

ASLR

34

Non-Executable Stack

■ Exploitation of most buffer overflow attacks relied
on loading ShellCode to stack (as we did before)
and redirect execution to it

■ Non-Executable stack renders this technique
useless, since the data on stack cannot be
executed

■ Implemented in most operating systems
■ Initially implemented as a kernel patch for Solaris

2.4/2.5 in 1996

35

Non-Executable Stack

■ Soon after release many techniques appeared to
bypass Non-Executable Stack protection

■ Most rely on the fact that code can be executed
anywhere else apart from stack

■ Initially attacks were implemented as ret2libc with
more techniques appearing later

36

Non-Executable Stack

■ By itself easily defeated
■ However in combination with ASLR will provide a

strong defense layer
■ ASLR is often regarded as Non-Executable Stack

protection

37

Non-Executable Stack

38

Canaries

■ Places a value (4
bytes) between
program data and
control data

■ Commonly exploitation
of stack buffer overflow
involves overwriting
return address

■ If Return address is
overwritten so is
canary

■ If canary Does not
match program is
terminated

39

Canaries

■ Stack Guard (0x000aff0d)
■ 0x00 Terminates execution of strcpy()
■ 0x0a Terminates execution of gets()
■ This time of canary is called “Terminator canary”
■ Other canaries exist, such as NULL canary –

0x00000000 and random XOR canary, which is
randomly XORed against return address, however
only the terminator is currently used

40

Canaries

■ It seems that it's not possible to overwrite a return
address in usual way

■ However local variables are not protected
■ Saved Frame Pointer is not protected
■ Program may be modified in any way until the

function returns

41

Canaries

■ Number of attacks are possible
■ Under some condition, where attacker has

unlimited control to memory of the process a GOT
table entries may be overwritten

■ Relocation of local variables by pointing callers
frame to GOT

42

Summary

■ Stack Protection techniques exist
■ Most are effective when supported by other

protection methods
■ Stack Overflow exploitation is significantly more

difficult (But not impossible)
■ Shift is towards web application hacking

