
1

Buffer Overflows. Protection Mechanisms.

Stack Based Buffer Overflows and
Protection Mechanisms.

Software Security
January 2008

Igor Yuklyanyuk

2

Outline

■ Buffer Overflow Introduction
■ What is a buffer overflow?
■ What is a ShellCode?
■ Exploitation
■ ASLR – Address Space Layout Randomization
■ Non-Executable Stack
■ Canaries

3

Part One

What Is a Buffer Overflow ???

4

What is a Buffer Overflow

■ A class of vulnerability caused by a bug in application
■ Most bugs in the 90's and early 00's were buffer overflows
■ May be exploited by attacker to gain control of the system

5

What is a Buffer Overflow

■ Buffer Overflow is a program condition where data is written
past allocated buffer (e.g. a string buffer)

■ Data copied past allocated buffer affects other bits of the
program

■ Buffer Overflow may occur on stack or heap portion of
memory

■ We are only concern with stack overflows
■ Not All Overflows are exploitable

6

What is a Buffer Overflow

■ Stack is a LIFO Data
Structure

■ New stack frame is Created
every function Call (runtime)

■ Execution is continued at
Return Address after
function completion

■ On x86 Stack grows
upwards while Memory
Addressing grows
Downwards

7

What is a Buffer Overflow

8

What is a Buffer Overflow

9

What is a Buffer Overflow

10

What is a ShellCode

■ Instead of breaking the program attacker wants to take control
■ ShellCode is the code that is executed upon successful attack
■ Performs specific tasks, such as shell execution (hence

ShellCode), connect to attacker controlled host, log deletion
etc.

■ Restricted in size
■ Usually must not contain null byte
■ Written in Assembly
■ Architecture specific

11

What is a ShellCode

■ Simple ShellCode executes
shell

12

What is a ShellCode

13

What is a ShellCode

■ There are null bytes in this
ShellCode

■ Null Byte is a terminating
character in C-string

■ Use simple logic; XOR
anything by itself results in
false

14

What is a ShellCode

15

What is a ShellCode

16

What is a ShellCode

17

What is a ShellCode

■ IDS/IPS may filter ShellCode
■ Alpha Numeric ShellCodes
■ ShellCode encoders
■ MosDef (Immunity)
■ Core Impact

18

Exploitation

■ Attacker may exploit a vulnerable program to escalate
privileges

■ Linux – Multiuser Operating System
■ Suid bit

19

Exploitation

20

Exploitation

21

Exploitaiton

■ We are now going to construct a buffer with our ShellCode, so
it can be referenced by a program

■ We will then find location of our ShellCode
■ Redirect EIP

22

Exploitation

23

Exploitation

24

Exploitation

■ Problems Matching Memory Address
 Time Consuming
 Very Unreliable
 ShellCode may change location depending on

platform, current environment or even bad weather
condition

 Looking for exact memory location is boring

25

Exploitation

■ NOP (No Operation) Sled
 NOP is a special instruction that is not doing anything
 Used by compilers etc
 We can use NOP Sled in order to increase the

memory range we need to hit
 We will be using the most common No Operation

instruction - 0x90

26

Exploitation

27

Exploitation

28

Exploitation

29

Exploitation

■ There are many other techniques for exploitation
■ ShellCode may be put in evnironment, argv[0], other places

within a program
■ Exploit writers should construct a reliable environment
■ One mistake may lead to a program crash, BoF exploits are

rarely used by consultants

30

Protection Mechanisms

■ Buffer Overflow existed for a while
■ There are many techniques developed to prevent exploitation

of buffer overflows
■ Most can be defeated, however a combination of protection

mechanisms provides a reasonable security

31

ASLR

■ Address Space Layout Randomization
 First implemented in PaX for Linux in 2001
 If library addresses, stack, heap etc are ALL randomized

an attacker wouldn't know where to redirect the execution
 All binaries must be recompiled as relocatable objects
 Can read more at http://pax.grsecurity.net/docs/

http://pax.grsecurity.net/docs/

32

ASLR

■ It is not perfect
 Not Everything is randomized (binaries are not

recompiled by most distributions)
 Return to Code (within programs) is possible
 Possible to brute-force if using NOP is an option
 Forked processes use the same layout as host

process
 http://www.stanford.edu/~blp/papers/asrandom.pdf

33

ASLR

34

Non-Executable Stack

■ Exploitation of most buffer overflow attacks relied
on loading ShellCode to stack (as we did before)
and redirect execution to it

■ Non-Executable stack renders this technique
useless, since the data on stack cannot be
executed

■ Implemented in most operating systems
■ Initially implemented as a kernel patch for Solaris

2.4/2.5 in 1996

35

Non-Executable Stack

■ Soon after release many techniques appeared to
bypass Non-Executable Stack protection

■ Most rely on the fact that code can be executed
anywhere else apart from stack

■ Initially attacks were implemented as ret2libc with
more techniques appearing later

36

Non-Executable Stack

■ By itself easily defeated
■ However in combination with ASLR will provide a

strong defense layer
■ ASLR is often regarded as Non-Executable Stack

protection

37

Non-Executable Stack

38

Canaries

■ Places a value (4
bytes) between
program data and
control data

■ Commonly exploitation
of stack buffer overflow
involves overwriting
return address

■ If Return address is
overwritten so is
canary

■ If canary Does not
match program is
terminated

39

Canaries

■ Stack Guard (0x000aff0d)
■ 0x00 Terminates execution of strcpy()
■ 0x0a Terminates execution of gets()
■ This time of canary is called “Terminator canary”
■ Other canaries exist, such as NULL canary –

0x00000000 and random XOR canary, which is
randomly XORed against return address, however
only the terminator is currently used

40

Canaries

■ It seems that it's not possible to overwrite a return
address in usual way

■ However local variables are not protected
■ Saved Frame Pointer is not protected
■ Program may be modified in any way until the

function returns

41

Canaries

■ Number of attacks are possible
■ Under some condition, where attacker has

unlimited control to memory of the process a GOT
table entries may be overwritten

■ Relocation of local variables by pointing callers
frame to GOT

42

Summary

■ Stack Protection techniques exist
■ Most are effective when supported by other

protection methods
■ Stack Overflow exploitation is significantly more

difficult (But not impossible)
■ Shift is towards web application hacking

