

CONTENTS IN DETAIL

FOREWORD by Pierre Vandevenne xix
ACKNOWLEDGMENTS xXXi
INTRODUCTION xxiii
PART |
INTRODUCTION TO IDA
1
INTRODUCTION TO DISASSEMBLY 3
Disassembly TREOTYcouiiiiii it 4
The What of Disassemblyccooiiiiiiiiiiiii i 5
The Why of Disassemblycocoiiiiiiiiiiiiii e 6
Malware AnGlysiscoocoiiiiiiiiiii 6
Vulnerability Analysiscooiiiiiiiiiii e 6
Software Interoperabilityccccoiiiiiiiiiiii e 7
Compiler Validahonc.ccoociiiiiiiiiiiii e 7
Debugging Displayso.eoooiiiiiiiiiiie et 7
The How of Disassemblycociiiiiiiiiiiiiii e 7
A Basic Disassembly Algorithmcccoiiiii 8
Linear Sweep Disassemblyc.c.ooiiiiiiiiiii e 9
Recursive Descent Disassemblycccooiiiiiiiiiiiii e 11
SUMMUATY ettt ettt ettt et e e e e e 14
2
REVERSING AND DISASSEMBLY TOOLS 15
Classification TOOIScuiiiiiiiiiit ittt 16
B e 16
PE TOOIS ettt e 18
P D e e 19
SUMMAIY TOOIS ittt ettt en 20
MM e e e 20
A e 22
OBJAUMP . 23
OMOO| e 24
dUMPDIN .o 25
CHHFIE L 25
Deep InSPection TOOISooiiiiiiit it 27
ST ettt ettt e 27
DisaSSEMbIErSoviiiiiiiie e 28

SUIMMOATY ettt ettt e ettt ee e e e s e e 29

3

IDA PRO BACKGROUND 31
Hex-Rays’ Stance on PIracyeueeiiiiiiiiiiiiiic e 32
ODbIAINING IDA PrO ..ottt 32
IDA VEISIONS ..ot 33
IDA LICENSES ... 33
Purchasing IDA ... o 33
Upgrading IDA ... e 34
IDA SUPPOTT RESOUICES ..ottt ettt et 34
Your IDA INStallGtionccouiiiiiiiiii e 35
Windows Installationcccooviiiiiiiii 36
OS X and Linux Installahonccccoviiiiiiii 37
The IDA Directory Layouteeoeiee it 37
Thoughts on IDA's User Inferfaceociiiiiiiiiiiiiiie e 39
SUIMMOAIY ettt ettt e ettt e ettt ee e e e s e e 39
PART Il
BASIC IDA USAGE
4
GETTING STARTED WITH IDA 43
Launching IDA ..o et 44
IDA File Loading ...ccveieiiie et 46
Using the Binary File Loaderocooiiiiiiiii 47
IDA Database Filesccoiiiiiiiiiiii it 49
IDA Database Creationc.cceoueeiiiiiinieeie ettt ettt 50
Closing IDA Databasesc.eiiiuiiiiiieiiie et 52
Reopening a Databasecccooviiiiiiiiiiii 53
Introduction 1o the IDA Desktopooiiiiiiiiiiiie et 54
Desktop Behavior During Initial Analysiscccooiiiiiiiiiiii 56
IDA Desktop Tips and THCKSeovviiiieie it 58
REPOTHING BUGS ettt 58
SUIMMUATY ettt e ettt e e et e e e e e e 59
5
IDA DATA DISPLAYS 61
The Principal IDA Displaysoooiiiiiii it 62
The Disassembly WIindowcoocooiiiiiiiiiiiii 62
The Names WINdowccoccoiiiiiiiiiiiiiiiii 68
The Message WIndowcoceoiiiiiiiiiiiii 69
The Strings WINAOWcoviiiiiiiiiiiiii e 70
Secondary IDA Displayscccoooiiiiiiie et 71
The Hex View WINdOwWoooiiiiiiiiiiii i 72
The Exports WINdOWcooiiiiiiiiiiiiiiiic e 73
The IMports WINAOWcooiiiiiiiiiiiiiiet e 73

X Contents in Detail

The FUNctions WINAOW ..o e, 74

The Structures Windowoc.oiiiiiiiiiiiiie et 74
The Enums WINOWcouviiiiiiiiiie e 75
Tertiary IDA Displaysoooiiiiiiiie et 75
The Segments WINdOWcoiiiiiiiiiiii i 75
The Signatures WINOWcoceeiiiiiiiiiiiiii ettt 76
The Type Libraries Windowcccooiiiiiiiiiiiiiiiiiicc 77
The Function Calls Windowc.cooiiiiiiiiiiiii e 77
The Problems Windowccooiiiiiiiiiiii e 78
SUMMOATY ettt ettt e et e e e e e 79
6
DISASSEMBLY NAVIGATION 81
Basic IDA NaVIGAHONcocuiiiiiiiiiii e 82
Double-Click Navigahoncoceiiiiiiiiiiii e 82
JUMP 10 AAress ...oooiiiiiiie e 84
Navigation History ... 84
SHACK FrAMES .. oeceii it 85
Calling CoONVENHONSoiiiiiiiie ittt 87
Local Variable Layoutccooiiiiiiiiiiiiiie ittt 91
Stack Frame Examplesccoiiiiiiiiiiiii e 91
IDA SHACK VIBWS ..eeeeiiieiiie ettt 95
Searching the Databaseooiiiiiiiiiiii e 100
TeXt SEATCRESiiiiii it 101
Binary SEarchesoooiiiiiii it 101
SUMMOAIY ettt ettt e e et ee e e e 102
7
DISASSEMBLY MANIPULATION 103
Names and NAMINGcoociiiiiiiiii e 104
Parameters and Local Variablescccooiiiiiiiii 104
NAMeEd LOCAHONSiieiiiii ittt 105
Register NAMESooiiiiiiiii e 107
Commenting i IDA .o 108
Regular COMMENESoooiiiiiiii i 109
Repeatable Commentsccoiiiiiiiiiiiiiie e 109
Anterior and Posterior LINesccouviiuiiiiiiieiiie et 110
Function CommENtscooiiiiiiiiiiiiieiiiie e 110
Basic Code Transformationscocuiiiiirioiiie ettt 110
Code Display OPHONSccoviiiiiiiiiie et 11
Formatting Instruction Operandscoceieiiieiiiiiiiiie e 114
Manipulating FUNCHONSooiiiiiiii i 115
Converting Data to Code (and Vice Versa)cccoeceiiiiiiiiieniiieiiieeeenns 121
Basic Data Transformationsc.eoouiiiiieeeiie et 122
Specifying Data SIZesccouiiiiiiiiiie e 123
Working With SHINGsoooiiiiiiiiiiie 124
SPECHYING AMTAYS ..eieiiii ittt 126
SUMMOAIY ottt e et ee e e e 128

Contents in Detail Xi

8

DATATYPES AND DATA STRUCTURES 129
Recognizing Data Structure USecooviiiiiiiiiiiiiniiiiic e 131
Array Member ACCESScouiiiiieiiii et 131
Structure Member ACCESSoovviiiiiiiiie i 136
Creating IDA SHUCHUIESuviiiiiiiieii ittt 142
Manual Structure Layoutoouiiiiiie e 143
Using Structure TemMplatesccuiiiiiiiiiie ettt 147
Importing New SHUCIUIEScoouiiiiiiiiiiii e 150
Parsing C Structure Declarationscccviiiiiiiiieiiii e 150
Parsing C Header Filescoooiiiiiiiiii e 151
Using Standard SIrUCHURESooouuiiiiit ittt 152
IDA TIL FIleS .ottt ettt ettt et et e e enn 155
Loading New TIL Filesc.ccoiiiiiiiiiiiiiiie e 155
Sharing TILFIles ...veeiiiiiiiie e 155
C+4 Reversing Primer ...o.ouiiiiiiiiiii e 156
The this POINTEr ..ooiiiieiii et 156
Virtual Functions and Vtablescccoooiiiiiiii e 157
The Object Life Cyclevviiiiiiii e 160
Name Manglingcoviiiiiii i 162
Runtime Type Identificationcccooiiiiiiiiii 163
Inheritance Relationshipscooiiiiiiiiiiii e 164
C++ Reverse Engineering Referencesccocoiviiiiiiiiiiii 165
SUMMOAIY ettt ettt e e et ee e e e 166
9
CROSS-REFERENCES AND GRAPHING 167
Cross-Referencesooueiiiiiii 168
Code CrossReferencescoociiiiiiiiiiiiiiiie e 169
Data Cross-Referencescooviiiiiiiiiiieiiiie e 171
Cross-Reference Listsccooiiiiiiiiiiiiiii e 173
Function Callsooooiiiiii i 175
IDA Graphingeeeeei e ettt 176
Legacy IDA Graphingceeeoiieeii i 176
IDA's Integrated Graph VIEWccceeviiiiiiiiiiiieieieee e 184
SUMMOAIY ottt ettt et ee e e e 186
10
THE MANY FACES OF IDA 187
Console Mode IDA ... 188
Common Features of Console Modeccccooiiiiiiiiiiiiiii 188
Windows Console Specificscoooiviiiiiiiiiiiiiiiei e 189
Linux Console SPecificscooviiiiiiiiiie e 190
OS X Console SPeCificsciiuiiiiiiiieiiie et 192
Using IDA's Batch Modeo.eiiiiiiiii e 195
GUI IDA on Non-Windows Platformsccooiiiiiiiiiiiie e 196
SUMMUAIY ettt ettt e e et ee e e e 108

Xii Contents in Detail

PART Il
ADVANCED IDA USAGE

11
CUSTOMIZING IDA

Configuration Filesccoiiiiiiiii i
The Main Configuration File: ida.cfgccoooiiiiiii
The GUI Configuration File: idagui.cfgoooveiiiiiii
The Console Configuration File: idatui.cfgccooiiiiiiii,
Additional IDA Configuration OpHonsccccoeiieiiiiiiiiiiie e
IDA COlOrs ..ottt ettt
Customizing IDA Toolbarsccooiiiiiiiiiiiiiiie e
SUMMOAIY ottt et ettt e e e et ae s

12
LIBRARY RECOGNITION USING FLIRT SIGNATURES

Fast Library Identification and Recognition Technologycccccooiiiiiiininnnn.
Applying FLIRT SIgnaturesccuueeiiieeiiieiiie et
Creating FLIRT Signature Filescccooviiiiiiiiiie et
Signature-Creation OVErviewccccccceeiiiiiiiiiiiiiiiieeiiie e
Identifying and Acquiring Static Librariesccccoiiiiiiiiiii
Creating Pattern Filescccooiiiiiiiiii e
Creating Signature Filesccccoiiiiiiiiii e
Startup SIGNATUIESeviiiiiiiii i
SUMMOAIY ottt

13
EXTENDING IDA’S KNOWLEDGE

Augmenting Function Informationccccoiiiiiiiiiiiii
IDS FHlES it
Creating IDS Filesoouuiiiiie e

Augmenting Predefined Comments with loadintc.cocoviiniiinii

SUMMOAIY ottt ettt e e s et ee s

14
PATCHING BINARIES AND OTHER IDA LIMITATIONS

The Infamous Patch Program Menucccooiiiiiiiiiiic e
Changing Individual Database Bytesccccocoiiiiiiiiiiiiiiiiiiiee
Changing a Word in the Databaseccocoviiieiiiiiiicic
Using the Assemble Dialogccooeiiiiiiiiiiie

IDA Output Files and Patch Generationc.coccciiiiiiiiiiiiiiiie e
IDA-Generated MAP Filescccoovviiiiiiiiiiieiee e,
IDA-Generated ASM Filescoouiiiiiiiiiiiiiieeee e,
IDA-Generated INC Filesc.c.cocuiiriiiiiiiieiieiie e
IDA-Generated LST Filescoooviiiiiiiiiiiiieeee e,

Contents in Detail

xiii

IDA-Generated EXE Filesunoeeeeieee e 243

IDA-Generated DIF Fileso oo e, 244
IDA-Generated HTML FIlesuneee e, 245
SUMMOAIY ettt ettt e e et ee e e e 245

PART IV
EXTENDING IDA’S CAPABILITIES

15
SCRIPTING WITH IDC 249
Basic Script EXECUHONoviiiiiiiiiiiic e 250
The IDC LANQUAGEeeeeuiiieiiit ettt ettt ettt e e e ene 251
IDC Variablesooeeiiiiie et 251
IDC EXPrESSIONS ...evvvieiiteeie ettt ettt ettt e e e 252
IDC STAIEMENTS ...ttt et 252
IDC FUNCHIONS .ttt et 253
IDC PrOgGIOMS ..ttt ettt 254
Error Handling in IDCoouiiiiii e 255
Persistent Data Storage in IDCcoooiiiiiiiii e 256
Associating IDC Scripts with Hotkeysoooiiiiiiiiii 258
USEfUl IDC FUNCHONS ...viitie ettt 258
Functions for Reading and Modifying Dataccocviiiiiiiiiiiiiiie i 259
User Interaction FUNCHONSvivviiiiiiieiiiiiiiice e 260
String-Manipulation FUNCHONSuiiiiiiiiiiiii e 261
File Input/Output FUNCHONSoiiiiiieciii i 261
Manipulating Database Namescccoociiiiiiiiii i 262
Functions Dealing with FUNCHONScccooiiiiiiiiiiiii, 263
Code CrossReference FUNCHONSccoiiiiiiiiiiiiiiiie e 264
Data Cross-Reference FUNCHONSooiiiieiiiiiiiii i 265
Database Manipulation FUNCHONSc.ueiiiiiiiiiiiii i 265
Database Search FUNCHONSooiiiiiiiiiiii e 266
Disassembly Line Componentsccoocuiiiiiiraiiie et 267
IDC Scripting EXamPlesoouuiiiiiieii e 267
Enumerating FUNCHONSuuiiiiiiiiiii e 268
Enumerating INSIUCHONSuuueiiiiiii e 268
Enumerating Cross-Referencesccceiviiiiiiiiiiiiiiiiiiiie e 269
Enumerating Exported FUNCHIONSooiiiiiiiiiiie e 272
Finding and Labeling Function Argumentsccccovviiiiiiiiiieiiiiie e, 272
Emulating Assembly Language Behaviorcccceviiiiiiiiiiiiiiiiie 274
SUMMUAIY ettt ettt e e et ee e e e 277
16
THE IDA SOFTWARE DEVELOPMENT KIT 279
SDK INFOAUCHON .ttt 280
SDK InStallationooeiiiiie e 281
SDK LAYOUL ettt 281
Configuring a Build Environmentccccoiiiiiiiiii e 283

XiV Contents in Detail

The IDA Application Programming Interfaceccccoeviiiiiiiiiiiii,
Header Files OVEIVIEWccciiiiiiiiiiiiiiiiie et
NEMOAES ..viiii ettt
Useful SDK Datatypeseeeeuiieieiieiiiieeiie e
Commonly Used SDK FUNCHONSccouviiiiiiiiiie e
lteration Techniques Using the IDA APloooiiiiiiiiiiiiine

SUMMOATY ettt e

17
THE IDA PLUG-IN ARCHITECTURE

WG @ PIUGHN o
The Plug-in Life Cyclecooooiiiiiii e,
Plug-in Initializationccoooiiiiiiiii
Event Notificationc.ccoiiiiiiiiiiiiiccce e
Plug-in EXECUHON ..ooviiiiiiiiiiiie e
Building Your Plug-insc.coiiiiiiiiiiii i
Plug-in Installationcccoiiiiiiiii e
Plug-in Configurationooiiiiiii i
Extending IDCeeiiiiie et
Plug-in User Interface OpHonsccceeiiiiiiiiiiiie et
Building Interface Elements with the SDKccooiiiiiniinnnnnn
SUMMOATY ottt

18
BINARY FILES AND IDA LOADER MODULES

Unknown File AnGlysiscociiiiiiiiiiiiiie e
Manually Loading a Windows PE Fileccccooiiiiiiniiniiccic
IDA Loader Modulescocoeviiiiiiiiiiiiiiict
Writing an IDA Loadercocooiiiiiiiiiiiiiiee
The Simpleton Loadercoccoiviiiiiiiiii e
Building an IDA Loader Moduleccocoiviiiiiiiiiie
A pcap Loader for IDA ...
Alternative Loader SIrategiesccccovvieeiiiiinieeiiiie et
SUMMOATY ettt ettt e

19
IDA PROCESSOR MODULES

Python Byte Codeo.uiiiiiiiiiie ettt
The Python Interpretercccooviiiiiiiiiiie e
Writing a Processor Modulecoooiiiiiiiiiiiiici
The Processor_t SIUCHc..oiiiiiiiiiiieeit e
Basic Initialization of the LPH Structurecccoeviiiiiiiiiie,
The ANQlYZEr ..ooooiiiieii e
The EMUIGIOr ...ooieiiiiiie et
The OUIPUHET ©...eeiiiie ettt
Processor Nohfcationscccooviiiiiiiiiii e
Other processor_t Membersccoooiiiiiiiiiiei e,

Contents in Detail

XV

Building Processor Modulesccoiiiiiiiiiiiiii e 389

Customizing Existing Processorsc.uueuiiiiiiiiiniiiiiiie e 393
Processor Module Architectureoociiiiiiiiiiiiie e 395
SUMMOAIY ettt ettt e e et ee e e e 396

PART V
REAL-WORLD APPLICATIONS

20
COMPILER VARIATIONS 399
Jump Tables and Switch Statementscc.oiiiiiiiiiiiicie e 400
RTTI IMpPlementahonscceiiiiieiii et 404
LOCANG MGIN 1ottt e e e 405
Debug vs. Release BINQMescc.eiiuiiiiieeeiie et 412
Alternative Calling ConVentionscociiiiiiiiiiie it 414
SUMMOAIY ettt et e e et ee e e e 415
21
OBFUSCATED CODE ANALYSIS 417
Anti-Static Analysis TeChRiQUESc.ooiiiiiiiiiiii e 418
Disassembly Desynchronizationcccooviiiiiiiiiiiiiiiie e 418
Dynamically Computed Target Addressesoooveeiiiiiiiieeiiieiiie e 421
Imported Function Obfuscationcccooviiiiiiiiiiiei e 428
Targeted Attacks on Analysis Toolsccooieiiiiiiiiiiiii e 432
Anti-Dynamic Analysis Techniquescoociiiiiiiiiiiiie e 433
Detecting VirtualiZatonc.cccoociiiiiiiiiiiiiiie e 433
Detecting Instrumentationcouiiiiiiiiiiiii e 435
Detecting Debuggersoiuiiiiiiieii et 435
Preventing Debuggingcooouiiiiiieii e 436
Static De-obfuscation of Binaries Using IDAccciiiiiiiiiiiie e 438
Script-Oriented De-obfuscationcccooviiiiiiiiiiii i 438
Emulation-Oriented De-obfuscationccccciiiiiiiiiiiiiiiiiicie e 443
SUMMOAIY ettt ettt e et ee e e e 455
22
VULNERABILITY ANALYSIS 457
Discovering New Vulnerabilities with IDAcoiiiiiiiiiiiiiie e 458
After-the-Fact Vulnerability Discovery with IDAc.cooiiiiiniiiii 465
IDA and the Exploit-Development Processccccooiiiiiiiiiiiieiiie it 469
Stack Frame Breakdowncccooiiiiiiiiiiiiiiii 470
Locating Instruction SEQUENCEScceiiiiiiiiiiiiiiiiiiin e 472
Finding Useful Virtual Addressescccoooviiiiiiiiiiniinii 473
Analyzing Shellcodeooiiiiiii e 475
SUMMOAIY e ettt ettt e e et ee e e e 477

XVi Contents in Detail

23
REAL-WORLD IDA PLUG-INS

HEXRAYS oo
IDAPYHRON i
IDARUD ..o e
IDA SYNC ettt
COllAbREGE ...
IdA-XBOMU ...l
MU A e

SUMMOATY ettt e e e

PART VI
THE IDA DEBUGGER

24
THE IDA DEBUGGER

Launching the Debuggerccoooiiiiiiiiii
Basic Debugger Displayscooiiiiiiiiiiiieeiie e
Process Controlc.coiiiiiiiiiii e
Breakpointsooiiiiiie e
TrACING i
SHACK TFACES ..ot
WAICRES .t
Automating Debugger Tasksccoiiiiiiiiiiiiiiii e
Scripting Debugger Actions with IDCccocooiiviiiiiiiiiiin
Automating Debugger Actions with IDA Plug-insccocee.
SUMMOATY ettt et e e

25
DISASSEMBLER/DEBUGGER INTEGRATION

Backgroundoouieiiii e
IDA Databases and the IDA Debuggercccovoiiiiiieiiiiiiie e
Debugging Obfuscated Codecociiiiiiiiiiiiiiiiiee e,
Simple Decryption and Decompression Loopscccceeeuneen.
Import Table Reconstructionccccceiviiiiiiiiiiiiiiec
Hiding the Debuggercocoiiiiiiiiii e
Dealing with EXCepHonsccovuiiiiiiiciiiiiieiceie e
SUMMOAIY ettt e e

26

LINUX, OS X, AND REMOTE DEBUGGING WITH IDA

Console-Mode Debuggingccooiiiiiiiiiieiiiieie e
Remote Debugging with IDAcciiiiiiiiiiiii e
Exception Handling During Remote Debuggingc.ccevueeenn.

Using Scripts and Plug-ins During Remote Debugging

SUMMOAIY ettt ettt e e e

Contents in Detail ~ XVii

A
USING IDA FREEWARE 4.9

Restrictions on IDA Freewareccooeiiiiiiiiiiiiiiiieiiiieiiee,
Using IDA Freewareccccooiiiiiiiiiiiiiiiiic e

B
IDC/SDK CROSS-REFERENCE

C
WHAT’S NEW IN IDA 5.3

Redesigned Debuggercccooiiieiiiiiiiiieie e
Type Library Supportooiiiiiiiiiiiiee e
New IDC FUNCHONSvevviiiiiiiiiiiiiiiie e
New API/SDK Functionalityccccovviiiiiiiiiiiiiii e

SUMMOATY ettt

INDEX

Xviii Contents in Detail

555

LIBRARY RECOGNITION USING
FLIRT SIGNATURES

At this point it is time to start moving

beyond IDA’s more obvious capabilities
and begin our exploration of what to do after
“The initial autoanalysis has been finished.”" In
this chapter we discuss techniques for recognizing
standard code sequences such as the library code con-
tained in statically linked binaries or standard initializa-
tion and helper functions inserted by compilers.

When you set out to reverse engineer any binary, the last thing that
you want to do is waste time reverse engineering library functions whose
behavior you could learn much more easily simply by reading a man page,
reading some source code, or doing a little Internet research. The challenge
presented by statically linked binaries is that they blur the distinction between
application code and library code. In a statically linked binary, entire libraries

LIDA generates this message in the message window when it has finished its automated
8¢ ge 1m g
processing of a newly loaded binary.

The IDA Pro Book
(C) 2008 by Chris Eagle

212

are combined with application code to form a single monolithic executable
file. Fortunately for us, tools are available that enable IDA to recognize and
mark library code, allowing us to focus our attention on the unique code
within the application.

Fast Library Identification and Recognition Technology

Fast Library Identification and Recognition Technology, better known as
FLIRT,? encompasses the set of techniques employed by IDA to identify
sequences of code as library code. At the heart of FLIRT are pattern-matching
algorithms that enable IDA to quickly determine whether a disassembled
function matches one of the many signatures known to IDA. The <IDADIR>/sig
directory contains the signature files that ship with IDA. For the most part,
these are libraries that ship with common Windows compilers, though a few
non-Windows signatures are also included.

Signature files utilize a custom format in which the bulk of the signature
data is compressed and wrapped in an IDA-specific header. In most cases,
signature filenames fail to give a clear indication of which library the associ-
ated signatures were generated from. Depending on how they were created,
signature files may contain a library name comment that describes their
contents. If we view the first few lines of extracted ASCII content from
a signature file, this comment is often revealed. The following Unix-style
command?® generally reveals the comment in the second or third line of
output:

strings sigfile | head -n 3

Within IDA, there are two ways to view comments associated with signature
files. First, you can access the list of signatures that have been applied to a
binary via View » Open Subviews » Signatures. Second, the list of all signature
files is displayed as part of the manual signature application process, which is
initiated via File » Load File » FLIRT Signature File.

Applying FLIRT Signatures

Chapter 12

When a binary is first opened, IDA attempts to apply special signature files,
designated as startup signatures, to the entry point of the binary. It turns
out that the entry point code generated by various compilers is sufficiently
different that matching entry point signatures is a useful technique for iden-
tifying the compiler that may have been used to generate a given binary.

2 Please see hitp://www. hex-rays.com/idapro/flirt. htm.

®The strings command was discussed in Chapter 2, while the head command is used to view only
the first few lines (three in the example) of its input source.

MAIN VS. _START

Recall that a program’s entry point is the address of the first instruction that will be
executed. Many longtime C programmers incorrectly believe that this is the address
of the function named main, when in fact it is not. The file type of the program, not
the language used to create the program, dictates the manner in which command-
line arguments are provided to a program. In order to reconcile any differences
between the way the loader presents command-ine arguments and the way the pro-
gram expects to receive them (via parameters to main, for example), some initializa-
tion code must execute prior fo transferring control to main. It is this initialization that
IDA designates as the entry point of the program and labels _start.

This initialization code is also responsible for any initialization tasks that must take
place before main is allowed to run. In a C++ program, this code is responsible for
ensuring that constructors for globally declared obijects are called prior to execution
of main. Similarly, cleanup code is inserted that executes after main completes in
order fo invoke destructors for all global objects prior to the actual termination of the
program.

If IDA identifies the compiler used to create a particular binary, then the
signature file for the corresponding compiler libraries is loaded and applied
to the remainder of the binary. The signatures that ship with IDA tend to
be related to proprietary compilers such as Microsoft Visual C++ or Borland
Delphi. The reason behind this is that a finite number of binary libraries ship
with these compilers. For open source compilers, such as GNU gcc, the binary
variations of the associated libraries are as numerous as the operating systems
the compilers ship with. For example, each version of FreeBSD ships with a
unique version of the C standard library. For optimal pattern matching, sig-
nature files would need to be generated for each different version of the
library. Consider the difficulty in collecting every variation of libc.a* that has
shipped with every version of every Linux distribution. It simply is not practi-
cal. In part, these differences are due to changes in the library source code
that result in different compiled code, but huge differences also result from
the use of different compilation options, such as optimization settings and the
use of different compiler versions to build the library. The net result is that
IDA ships with very few signature files for open source compiler libraries. The
good news, as you shall soon see, is that Hex-Rays makes tools available that
allow you to generate your own signature files from static libraries.

So, under what circumstances might you be required to manually apply
signatures to one of your databases? Occasionally IDA properly identifies
the compiler used to build the binary but has no signatures for the related
compiler libraries. In such cases, either you will need to live without signatures,
or you will need to obtain copies of the static libraries used in the binary and
generate your own signatures. Other times, IDA may simply fail to identify
a compiler, making it impossible to determine which signatures should be

* libc.ais the version of the C standard library used in statically linked binaries on Unix-style
systems.

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 213

214

WARNING

Chapter 12

applied to a database. This is common when analyzing obfuscated code in
which the startup routines have been sufficiently mangled to preclude com-
piler identification. The first thing to do, then, would be to de-obfuscate the
binary sufficiently before you could have any hope of matching any library
signatures. We will discuss techniques for dealing with obfuscated code in
Chapter 21.

Regardless of the reason, if you wish to manually apply signatures to a
database, you do so via File » Load File » FLIRT Signature File, which opens
the signature selection dialog shown in Figure 12-1.

=il
File Op... | Libramy name | :I
8 aztec Aztec v3.20d I
\P b32vel Borland Vizsual Component Library & Packages
B E5132mic Borland 5.0x MFC adaptation
& b5 16cgw BCC v4.5/v5.x CodeGuard 16 bit
b5 2caw BCC v4.5/v8.x CodeGuard 32 bit
& be15bids BCC++ for 05/2 classib
S bc15c2 BCC++ for D542 runtime:
B b1 Sowl BCC++ for 05/2 DwL
S bc3ck TCC++/BCC++ classlb
8 b owlw BCC++ 3.1 OWwL j
ok I Cancel | Help Search
|Line 33 of 134 4

Figure 12-1: FLIRT signature selection

The File column reflects the name of each .sigfile in IDA’s <IDADIR>/sig
directory. Note that there is no means to specify an alternate location for .sig
files. If you ever generate your own signatures, they need to be placed into
<IDADIR>/sig along with every other .sig file. The Library name column
displays the library name comment that is embedded within each file. Keep
in mind that these comments are only as descriptive as the creator of the
signatures (which could be you!) chooses to make them.

When a library module is selected, the signatures contained in the
corresponding .sig file are loaded and compared against every function
within the database. Only one set of signatures may be applied at a time,
so you will need to repeat the process if you wish to apply several different
signature files to a database. When a function is found to match a signature,
the function is marked as a library function, and the function is automatically
renamed according to the signature that has been matched.

Only functions named with an IDA dummy name can be automatically renamed. In

other words, if you have renamed a function, and that function is later matched by a

signature, then the function will not be renamed as a result of the match. Therefore, it
is to your benefit to apply signatures as early in your analysis process as possible.

Recall that statically linked binaries blur the distinction between applica-
tion code and library code. If you are fortunate enough to have a statically
linked binary that has not had its symbols stripped, you will at least have
useful function names (as useful as the trustworthy programmer has chosen

to create) to help you sort your way through the code. However, if the binary
has been stripped, you will have perhaps hundreds of functions, all with
IDA-generated names that fail to indicate what the function does. In both
cases, IDA will be able to identify library functions only if signatures are
available (function names in an unstripped binary do not provide IDA with
enough information to definitively identify a function as a library function).
Figure 12-2 shows the Overview Navigator for a statically linked binary.

Overview navigator Scale: 1 pixel = 64 bytes; Range: 080480AC-0804CA38 x|
i ol | Library function | Data
L M Regular function Il Unexplared

Additional diSD'@"IW 'l M Instruction W Estemnal symbol

Figure 12-2: Statically linked with no signatures

In this display, no functions have been identified as library functions, so
you may find yourself analyzing far more code than you really need to. After
application of an appropriate set of signatures, the Overview Navigator is
transformed as shown in Figure 12-3.

Overview navigator Scale: 1 pixel = 64 bytes; Range: 080480AC-0804CA3S x|
i #| | Library function | Data
L M Feqular function Il Unexplared

Additional diSD'@"IW 'l M Instruction W Estemnal symbol

Figure 12-3: Statically linked binary with signatures applied

As you can see, the Overview Navigator provides the best indication of
the effectiveness of a particular set of signatures. With a large percentage of
matched signatures, substantial portions of code will be marked as library
code and renamed accordingly. In the example in Figure 12-3, it is highly
likely that the actual application-specific code is concentrated in the far-left
portion of the navigator display.

There are two points worth remembering when applying signatures.
First, signatures are useful even when working with a binary that has not
been stripped, in which case you are using signatures more to help IDA
identify library functions than to rename those functions. Second, statically
linked binaries may be composed of several separate libraries, requiring the
application of several sets of signatures in order to completely identify all
library functions. With each additional signature application, additional
portions of the Overview Navigator will be transformed to reflect the discovery
of library code. Figure 12-4 shows one such example. In this figure, you see
a binary that was statically linked with both the C standard library and the
OpenSSL? cryptographic library.

Dverview navigator Scale: 1 pixel = 4096 bytes; Range: 080480F4-0816E110" x|
q ol | Library function | Data
b M Regular function Il Unexplared

Additional diSD'@"IW 'l M Instruction W Estemnal symbol

Figure 12-4: Static binary with first of several signatures applied

5Please see hitp://openssl.org/.

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 215

216

Specifically, you see that following application of the appropriate
signatures for the version of OpenSSL in use in this application, IDA has
marked a small band (the lighter band toward the left edge of the address
range) as library code. Statically linked binaries are often created by taking
the application code first and then appending required libraries to create the
resulting executable. Given this picture, we can conclude that the memory
space to the right of the OpenSSL library is likely occupied by additional
library code, while the application code is most likely in the very narrow band
to the left of the OpenSSL library. If we continue to apply signatures to the
binary shown in Figure 12-4, we eventually arrive at the display of Figure 12-5.

Overview navigator Scale: 1 pizel = 4096 bytes; Range: 080480F4-0816E11I x|
q »|_| Libraw function | Data

» 4| M Regular function Il Unesplored
Additional display:lm M Instruction W External symbol

Figure 12-5: Static binary following application of several signatures

In this example, we have applied signatures for libc, liberypto, libkrb5,
libresolv, and others. In some cases we selected signatures based on strings
located within the binary; in other cases we chose signatures based on their
close relationship to other libraries already located within the binary. The
resulting display continues to show a dark band in the right half of the naviga-
tion band and a smaller dark band at the extreme left edge of the navigation
band. Further analysis is required to determine the nature of these remaining
nonlibrary portions of the binary. In this case we would learn that the wider
dark band on the right side is part of an unidentified library, while the dark
band on the left is the application code.

Creating FLIRT Signature Files

Chapter 12

As we discussed previously, it is simply impractical for IDA to ship with
signature files for every static library in existence. In order to provide IDA
users with the tools and information necessary to create their own signatures,
Hex-Rays distributes the Fast Library Acquisition for Identification and
Recognition (FLAIR) tool set. The FLAIR tools are made available on
your IDA distribution CD or via download from the Hex-Rays website® for
authorized customers. Like several other IDA add-ons, the FLAIR tools are
distributed in a Zip file. For IDA version 5.2, the associated FLAIR tools are
contained in flair52.zip. Hex-Rays does not necessarily release a new version
of the FLAIR tools with each version of IDA, so you should use the most
recent version of FLAIR that does not exceed your version of IDA.
Installation of the FLAIR utilities is a simple matter of extracting the
contents of the associated Zip file, though we highly recommend that you
create a dedicated flair directory as the destination because the Zip file is not

®The current version is flair52.zip and is available here: http://www.hex-rays.com/idapro/ida/
Slair52.zip. A username and password supplied by Hex-Rays are required to access the download.

organized with a top-level directory. Inside the FLAIR distribution you will
find several text files that constitute the documentation for the FLAIR tools.
Files of particular interest include these:

readme.txt
This is a top-level overview of the signature-creation process.

plb.txt
This file describes the use of the static library parser, plb.exe. Library pars-
ers are discussed in more detail in “Creating Pattern Files” on page 219.

pat.txt
This file details the format of pattern files, which represent the first
step in the signature-creation process. Pattern files are also described
in “Creating Pattern Files” on page 219.

sigmake.txt
This file describes the use of sigmake.exe for generating .sig files from
pattern files. Please refer to “Creating Signature Files” on page 221 for
more details.

Additional top-level content of interest includes the bin directory, which
contains all of the FLAIR tools executable files, and the startup directory,
which contains pattern files for common startup sequences associated with
various compilers and their associated output file types (PE, ELF, and so on).
An important point to understand regarding the FLAIR tools is that while
all of the tools run only from the Windows command prompt, the resulting
signature files may be used with all IDA variants (Windows, Linux, and OS X).

Signature-Creation Overview

The basic process for creating signatures files does not sound complicated, as
it boils down to four simple-sounding steps.

1. Obtain a copy of the static library for which you wish to create a
signature file.

2. Utilize one of the FLAIR parsers to create a pattern file for the library.

3. Run sigmake.exe to process the resulting pattern file and generate a
signature file.

4. Install the new signature file in IDA by copying it to <IDADIR>/sig.

Unfortunately, in practice, only the last step is as easy as it sounds. In the
following sections, we discuss the first three steps in more detail.

Identifying and Acquiring Static Libraries

The first step in the signature-generation process is to locate a copy of the
static library for which you wish to generate signatures. This can pose a bit of
a challenge for a variety of reasons. The first obstacle is to determine which
library you actually need. If the binary you are analyzing has not been stripped,

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 217

218

Chapter 12

you might be lucky enough to have actual function names available in your
disassembly, in which case Google will probably provide several pointers to
likely candidates.

Stripped binaries are not quite as forthcoming regarding their origins.
Lacking function names, you may find that a good strings search may yield
sufficiently unique strings to allow for library identification, such as the follow-
ing, which is a dead giveaway:

OpenSSL 0.9.8a 11 Oct 2005

Copyright notices and error strings are often sufficiently unique that once
again you can use Google to narrow your search. If you choose to run strings
from the command line, remember to use the -a option to force strings to
scan the entire binary; otherwise you may miss some potentially useful string
data.

In the case of open source libraries, you are likely to find source code
readily available. Unfortunately, while the source code may be useful in help-
ing you understand the behavior of the binary, you cannot use it to generate
your signatures. It might be possible to use the source to build your own ver-
sion of the static library and then use that version in the signature-generation
process. However, in all likelihood, variations in the build process will result
in enough differences between the resulting library and the library you are
analyzing that any signatures you generate will not be terribly accurate.

The best option is to attempt to determine the exact origin of the binary
in question. By this we mean the exact operating system, operating system
version, and distribution (if applicable). Given this information, the best
option for creating signatures is to copy the libraries in question from an
identically configured system. Naturally, this leads to the next challenge:
Given an arbitrary binary, on what system was it created? A good first step
is to use the file utility to obtain some preliminary information about the
binary in question. In Chapter 2 we saw some sample output from file.

In several cases, this output was sufficient to provide likely candidate systems.
The following is just one example of very specific output from file:

$ file sample_file_1
sample_file 1: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD),
for FreeBSD 5.4, statically linked, FreeBSD-style, stripped

In this case we might head straight to a FreeBSD 5.4 system and track
down libc.a for starters. The following example is somewhat more ambiguous,
however:

$ file sample_file_2
sample_file 2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.6.9, statically linked, stripped

We appear to have narrowed the source of the file to a Linux system,
which, given the abundance of available Linux distributions, is not saying
much. Turning to strings we find the following:

GCC: (GNU) 4.1.1 20060525 (Red Hat 4.1.1-1)

Here the search has been narrowed to Red Hat distributions (or deriv-
atives) that shipped with gcc version 4.1.1. GCC tags such as this are not
uncommon in binaries compiled using gcc, and fortunately for us, they
survive the stripping process and remain visible to strings.

Keep in mind that the file utility is not the be all and end all in file
identification. The following output demonstrates a simple case in which
file seems to know the type of the file being examined but for which the
output is rather nonspecific.

$ file sample_file_3
sample_file 3: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped

This example was taken from a Solaris 10 x86 system. Here again, the
strings utility might be useful in pinpointing this fact.

Creating Pattern Files

At this point you should have one or more libraries for which you wish to
create signatures. The next step is to create a pattern file for each library.
Pattern files are created using an appropriate FLAIR parser utility. Like
executable files, library files are built to various file format specifications.
FLAIR provides parsers for several popular library file formats. As detailed
in FLAIR’s readme.ixt file, the following parsers can be found in FLAIR’s bin
directory:

plb.exe
Parser for OMF libraries (commonly used by Borland compilers)

pcf.exe
Parser for COFF libraries (commonly used by Microsoft compilers)

pelf.exe
Parser for ELF libraries (found on many Unix systems)

ppsx.exe
Parser for Sony PlayStation PSX libraries

ptmobj.exe
Parser for TriMedia libraries

pomf166.exe
Parser for Kiel OMF 166 object files

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 219

To create a pattern file for a given library, specify the parser that
corresponds to the library’s format, the name of the library you wish to
parse, and the name of the resulting pattern file that should be generated.
For a copy of libc.a from a FreeBSD 6.1 system, you might use the following:

$./pelf libc.a libc_FreeBSD61.pat
libc.a: skipped 0, total 986

Here, the parser reports the file that was parsed (Zibc.a), the number of
functions that were skipped (0),” and the number of signature patterns that
were generated (986). Each parser accepts a slightly different set of command-
line options documented only through the parser’s usage statement. Execut-
ing a parser with no arguments displays the list of command-line options
accepted by that parser. The pb.txt file contains more detailed information
on the options accepted by the plb.exe parser. This file is a good basic source
of information, since other parsers accept many of the options it describes as
well. In many cases, simply naming the library to be parsed and the pattern
file to be generated is sufficient.

A pattern file is a text file that contains, one per line, the extracted
patterns that represent functions within a parsed library. A few lines from
the pattern file created previously are shown here:

5589E58B55108B450C8B4D0885D2EB06890183C1044A75F88B4508C9C3. 00 0000 001D :0000 _wmemset
5589E58B4D1057C1E102568B7D088B750CFCC1E902F3A55E8B45085FCIC3. ... 00 0000 001E :0000 _wmemcpy
5589E556538B751031DB39F38B4D088B550C73118B023901751183C10483C204 19 A9BE 0039 :0000 _wmemcmp

220

Chapter 12

The format of an individual pattern is described in FLAIR’s pat.txt file. In
a nutshell, the first portion of a pattern lists the initial byte sequence of the
function to a maximum of 32 bytes. Allowance is made for bytes that may vary
as a result of relocation entries. Such bytes are displayed using two dots. Dots
are also used to fill the pattern out to 64° characters when a function is shorter
than 32 bytes (as _wmenmset is in the previous code). Beyond the initial 32 bytes,
additional information is recorded to provide more precision in the signature-
matching process. Additional information encoded into each pattern line
includes a CRC16 value computed over a portion of the function, the length
of the function in bytes, and a list of symbol names referenced by the function.
In general, the longer functions that reference many other symbols yield more
complex pattern lines. In the file libc_FreeBSD61.pat generated previously,
some pattern lines exceed 20,000 characters in length.

"The plb and pcf parsers may skip some functions depending on the command-line options
supplied to the parsers and the structure of the library being parsed.

8 At two characters per byte, 64 hexadecimal characters are required to display the contents of
32 bytes.

9 This is a 16-bit cyclic redundancy check value. The CRC16 implementation utilized for pattern
generation is included with the FLAIR tool distribution in the file crc16.cpp.

NOTE

Several third-party programmers have created utilities designed to gen-
erate patterns from existing IDA databases. One such utility is IDB_2_PAT,'°
an IDA plug-in written by J.C. Roberts that is capable of generating patterns
for one or more functions in an existing database. Utilities such as these are
useful if you expect to encounter similar code in additional databases and
have no access to the original library files used to create the binary being
analyzed.

Creating Signature Files

Once you have created a pattern file for a given library, the next step in the
signature-creation process is to generate a .sig file suitable for use with IDA.
The format of an IDA signature file is substantially different from a pattern
file. Signature files utilize a proprietary binary format designed both to
minimize the amount of space required to represent all of the information
present in a pattern file and to allow for efficient matching of signatures
against actual database content. A high-level description of the structure of a
signature file is available on the Hex-Rays website.'!

FLAIR’s sigmake.exe utility is used to create signature files from pattern
files. By splitting pattern generation and signature generation into two distinct
phases, the signature-generation process is completely independent of the
pattern-generation process, which allows for the use of third-party pattern
generators. In its simplest form, signature generation takes place by using
sigmake.exe to parse a .pat file and create a .sig file, as shown here:

$./sigmake libssl.pat libssl.sig

If all goes well, a .sigfile is generated and ready to install into <IDADIR>/
sig. However, the process seldom runs that smoothly.

The sigmake documentation file, sigmake.txt, recommends that signature filenames
Jfollow the MS-DOS 8.3 name-length convention. This is not a hard-and-fast require-
ment, however. When longer filenames are used, only the first eight characters of the
base filename are displayed in the signature-selection dialog.

Signature generation is often an iterative process, as it is during this phase
when collisions must be handled. A collision occurs any time two functions
have identical patterns. If collisions are not resolved in some manner, it is
not possible to determine which function is actually being matched during
the signature-application process. Therefore, sigmake must be able to resolve
each generated signature to exactly one function name. When this is not
possible, based on the presence of identical patterns for one or more func-
tions, sigmake refuses to generate a .sigfile and instead generates an exclusions

10 please see http://www.openrce.org/downloads/details/26/IDB_2_PAT.
1 Please see http://www.hex-rays.com/idapro/flirt. htm.

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 221

file (.exc). A more typical first pass using sigmake and a new .patfile (or set of
.pat files) might yield the following.

$./sigmake libc_FreeBSD61.pat 1libc_FreeBSD61.sig
See the documentation to learn how to resolve collisions.
: modules/leaves: 13443631/970, COLLISIONS: 911

The documentation being referred to is sigmake.txt, which describes the
use of sigmake and the collision-resolution process. In reality, each time sigmake
is executed, it searches for a corresponding exclusions file that might contain
information on how to resolve any collisions that sigmake may encounter while
processing the named pattern file. In the absence of such an exclusions file,
and when collisions occur, sigmake generates such an exclusions file rather
than a signature file. In the previous example, we would find a newly created
file named libc_FreeBSD61.exc. When first created, exclusions files are text files
that detail the conflicts that sigmake encountered while processing the pattern
file. The exclusions file must be edited to provide sigmake with guidance as to
how it should resolve any conflicting patterns. The general process for editing
an exclusions file follows.

When generated by sigmake, all exclusions files begin with the following
lines:

jommmmmm- (delete these lines to allow sigmake to read this file)
; add '+' at the start of a line to select a module
; add '-' if you are not sure about the selection

; do nothing if you want to exclude all modules

The intent of these lines it to remind you what to do to resolve collisions
before you can successfully generate signatures. The most important thing to
do is delete the four lines that begin with semicolons, or sigmake will fail to
parse the exclusions file during subsequent execution. The next step is to
inform sigmake of your desire for collision resolution. A few lines extracted
from libc_FreeBSD61.exc appear here:

___ntohs 00 0000 OFB744240486C4C3 ¢ cuuueueeeeeteienennnneanneeseesennennnsannnnns
___htons 00 0000 OFB744240486C4C3 ¢ cuuueuueeeeeeinnnnnnneenneeseesennannnsannnnns
_index 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3.....cvvnnnn..
_strchr 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3.....cvvtnnn..
_rindex 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........
_strrchr 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3........ ..
These lines detail three separate collisions. In this case, we are being told
that the function ntohs is indistinguishable from htons, index has the same
signature as strchr, and rindex collides with strrchr. If you are familiar with
any of these functions, this result may not surprise you, as the colliding func-
tions are essentially identical (for example, index and strchr perform the
same action).
222 Chapter 12

In order to leave you in control of your own destiny, sigmake expects you
to designate no more than one function in each group as the proper function
for the associated signature. You select a function by prefixing the name with
a plus character (+) if you want the name applied anytime the corresponding
signature is matched in a database or a minus character (-) if you simply want
a comment added to the database whenever the corresponding signature is
matched. If you do not want any names applied when the corresponding
signature is matched in a database, then you do not add any characters. The
following listing represents one possible way to provide a valid resolution for
the three collisions noted previously:

+___ntohs
___htons

_index
_strchr

_rindex
- _strrchr

00 0000 OFB744240486CA4C3 . . uuneenennenneeneensensencesseensensencannas
00 0000 OFB744240486C4C3 . . tunieenennenneeneensensescesseonsensensannss

00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3. .. vvvttnnn..
00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3. .. vttt

00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........
00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........

In this case we elect to use the name ntohs whenever the first signature is
matched, do nothing at all when the second signature is matched, and have
a comment about strrchr added when the third signature is matched. The
following points are useful when attempting to resolve collisions:

1. To perform minimal collision resolution, simply delete the four
commented lines at the beginning of the exclusions file.

2. Never add a +/- to more than one function in a collision group.

If a collision group contains only a single function, do notadd a +/- in
front of that function; simply leave it alone.

4. Subsequent failures of sigmake cause data, including comment lines, to
be appended to any existing exclusions file. This extra data should be
removed and the original data corrected (if the data was correct, sigmake
would not have failed a second time) before rerunning sigmake.

Once you have made appropriate changes to your exclusions file, you
must save the file and rerun sigmake using the same command-line arguments
that you used initially. The second time through, sigmake should locate, and
abide by, your exclusions file, resulting in the successful generation of a .sig
file. Successful operation of sigmake is noted by the lack of error messages and
the presence of a .sig file, as shown here:

$./sigmake libc_FreeBSD61.pat libc_FreeBSD61.sig

After a signature file has been successfully generated, you make it available
to IDA by copying it to your <IDADIR> /sig directory. Then your new signatures
are available using File » Load File » FLIRT Signature File.

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 223

Note that we have purposefully glossed over all of the options that can be
supplied to both the pattern generators and sigmake. A rundown of available
options is provided in plb.txt and sigmake.txt. The only option we will make
note of is the -n option used with sigmake. This option allows you to embed a
descriptive name inside a generated signature file. This name is displayed
during the signature-selection process (see Figure 12-1), and it can be very
helpful when sorting through the list of available signatures. The following
command line embeds the name string “FreeBSD 6.1 C standard library”
within the generated signature file:

$./sigmake -n"FreeBSD 6.1 C standard library" libc_FreeBSD61.pat libc_FreeBSD61.sig

224

Chapter 12

As an alternative, library names can be specified using directives within
exclusion files. However, since exclusion files may not be required in all
signature-generation cases, the command-line option is generally more
useful. For further details, please refer to sigmake. (xt.

Startup Signatures

IDA also recognizes a specialized form of signatures, called startup signatures.
Startup signatures are applied when a binary is first loaded into a database in
an attempt to identify the compiler that was used to create the binary. If IDA
can identify the compiler used to build a binary, then additional signature
files, associated with the identified compiler, are automatically loaded during
the initial analysis of the binary.

Given that the compiler type is initially unknown when a file is first loaded,
startup signatures are grouped by and selected according to the file type of
the binary being loaded. For example, if a Windows PE binary is being loaded,
then startup signatures specific to PE binaries are loaded in an effort to
determine the compiler used to build the PE binary in question.

In order to generate startup signatures, sigmake processes patterns that
describe the startup routine'? generated by various compilers and groups
the resulting signatures into a single type-specific signature file. The startup
directory in the FLAIR distribution contains the startup patterns used by
IDA, along with the script, startup.bat, used to create the corresponding
startup signatures from those patterns. Refer to startup.bat for examples of
using sigmake to create startup signatures for a specific file format.

In the case of PE files, you would notice several pe_* pat files in the startup
directory that describe startup patterns used by several popular Windows
compilers, including pe_vc.pat for Visual Studio patterns and pe_gcc. pat for
Cygwin/gcc patterns. If you wish to add additional startup patterns for PE
files, you would need to add them to one of the existing PE pattern files or
create a new pattern file with a pe_ prefix in order for the startup signature-
generation script to properly find your patterns and incorporate them into
the newly generated PE signatures.

2 The startup routine is generally designated as the program’s entry point. In a C/C++ program,
the purpose of the startup routine is to initialize the program’s environment prior to passing
control to the main function.

One last note about startup patterns concerns their format, which unfortu-
nately is slightly different from patterns generated for library functions. The
difference lies in the fact that a startup pattern line is capable of relating the
pattern to additional sets of signatures that should also be applied if a match
against the pattern is made. Other than the example startup patterns included
in the startup directory, the format of a startup pattern is not documented in
any of the text files included with FLAIR.

Summary

Automated library code identification is an essential capability that sig-
nificantly reduces the amount of time required to analyze statically linked
binaries. With its FLIRT and FLAIR capabilities, IDA makes such automated
code recognition not only possible but extensible by allowing users to create
their own library signatures from existing static libraries. Familiarity with the
signature-generation process is an essential skill for anyone who expects to
encounter statically linked binaries.

The IDA Pro Book
(C) 2008 by Chris Eagle Library Recognition Using FLIRT Signatures 225

IDC Function SDK Implementation

isDeco //macro

isDec1 //macro

isDefArgo //macro

isDefArgl //macro

isEnumo //macro

isEnuml //macro

isExtra //macro

isFlow //macro

isFopo //macro

isFop1 //macro

isHead //macro

isHexo //macxo

isHex1 //macro

isloaded //macro

isOcto //macro

isOct1 //macro

isoffo //macxo

isOff1 //macro

isRef //macro

isSego //macro

isSegl //macro

isStkvaro //macro

isStkvari //macro

isStroffo //macro

isStroff1 //macro

isTail //macro

isUnknown //macro

isvar //macro

loadfile linput_t *1i = make_linput(handle);
filezbase(li, pos, ea, ea + size, false);

) unmake_linput(1i);

1toa Calls internal conversion routine

ord return str[o];

readlong unsigned int res;
freadbytes(handle, &res, 4, mostfirst);
return res;

readshort unsigned short res;
freadbytes(handle, &res, 2, mostfirst);
return res;

readstr gfgets(buf, sizeof(buf), handle);
return gqstrdup(buf);

rotate_left return rotate_left(value, count, nbits, offset);

savefile base2file(handle, pos, ea, ea + size);

set_start_cs

//macro, see SetlongPrm

IDC/SDK Cross-Refserence

571

572

Appendix B

IDC Function SDK Implementation

set_start_ip //macro, see SetlongPrm

strlen return strlen(str);

strstr return strstr(str, substr);

substr Calls internal slice routine

writelong furitebytes(handle, &dword, 4, mostfirst);
writeshort fwritebytes(handle, &word, 2, mostfirst);
writestr gfputs(str, handle);

xtol return strtoul(str, NULL, 16);

//*** undocumented function (four underscores)
//1eturns database creation timestamp
return RootNode.altval(RIDX_ALT_CTIME);

WHAT'S NEW IN IDA 5.3

f(@ W\

g .
"L As this book was nearing completion,
the beta release of IDA version 5.3 was
announced. Fortunately, the IDA user inter-
face remains largely unchanged, and the contents
of the book apply equally to the use of IDA 5.3. This
appendix details some of the new features that have

been introduced in the latest version of IDA. Some of
the announced features are not available as part of the beta release but are
discussed here based on information supplied by Hex-Rays.! In general, the
changes present in version 5.3 offer additional or improved capabilities rather
than drastic changes to any existing capabilities.

1Please see http://www. hex-rays.com/idapro/5 3preview/index. htm.

574

Redesigned Debugger

All of IDA’s debugger modules have been redesigned to be multithreaded and
now support multiple simultaneous debugging sessions. From a user-interface
perspective, operation of the debugger remains the same as detailed in Chap-
ters 24, 25, and 26, with a slight redesign of the register windows as the only
visible distinguishing feature of the new debugger. IDA 5.3 adds support for
debugging on the Apple iPhone and Symbian OS platforms.

Type Library Support |

IDA provides type libraries in the form of .# files. In Chapter 13 we dis-
cussed the use of the File » Load File » Parse C Header File command to
load additional type information from a C header file into an IDA database.
Unfortunately, the newly parsed information was available only within the
database for which it was parsed. Therefore Chapter 13 also presented a series
of steps to be followed to obtain the resulting .#!file and make it available for
general use in any database. IDA 5.3 introduces a new utility named TILIB that
performs the same function as the Parse C Header File command but inde-
pendently of any database. This results in the creation of a .¢il file that can be
dropped into <IDADIR>/til for use with any database. For users of IDA 5.3,
this utility makes obsolete the .til creation process presented in Chapter 13.

New IDC Functions

Several new IDC functions have been added in IDA 5.3. The majority of the
new functions allow the debugger exception list to be examined and modi-
fied through the addition (DefineException) or deletion (ForgetException)
of individual exception types. Any changes to the exception list apply only
to the active IDA session and are not saved permanently to exceptions.cfg.
Additional functions allow programmatic modification of IDA configuration
settings (ChangeConfig) and finer control of threads within a process being
debugged (SuspendThread, ResumeThread).

New API/SDK Functionality

Appendix €

The IDA SDK has also been updated with version 5.3. Many of the new
functions parallel the new functions and functionality added to IDC. The
new SDK also contains several new notification messages that allow modules
the opportunity to be informed of additional IDA events, including the
creation and deletion of code and data cross-references.

An interesting new feature in the 5.3 SDK is the ability to register an
external language interpreter (such as Perl or Python) to be used as IDA’s
default expression evaluator in lieu of IDC using the register_extlang func-
tion, whose prototype is shown here:

void idaapi register extlang(const extlang_t *el)

The extlang_t structure points to a user-defined calcexpr function (among
others) that IDA calls each time an expression needs to be evaluated.? In
practice, a PLUGIN_FIX-type plug-in (see Chapter 17) might initialize an embed-
ded interpreter, using Py_Initialize,? for example, initialize an extlang_t
structure, and provide an implementation of a calcexpr function capable of
passing IDA-supplied expressions to the embedded interpreter and then
feeding the interpreter-evaluated result back to IDA via parameters supplied
to calcexpr. More information on registering an alternate interpreter may
be found in the expr.hpp header file included with the 5.3 SDK.

Summary

Rather than representing sweeping changes, IDA 5.3 offers incremental
improvements in a number of areas ranging from simple bug fixes to
improved analysis algorithms, updated type libraries and signatures, and
support for more platforms. Users of previous versions of IDA will find the
move to IDA 5.3 painless.

2In most cases, values entered into IDA dialog boxes, such as the Jump to Address dialog, are
treated and evaluated as IDC expressions.

8 Please see http://www. python.org/doc/ext/embedding. html.

What's New in IDA 5.3 575

INDEX

NOTE Page numbers followed by n refer to allins.hpp file, 235
footnotes. alset function, 294
AltOp function, 556

Symbols altvals, 291, 292
AMD64 processor, IDA support for, 33
$ (dollar sign), in AT&T assembly Amini, Pedram, 204n, 485
syntax, 9 ana function, 371
// comments, IDC command dialog ana.cpp file, 371
and, 254 Analysis function, 556
% symbol, in AT&T assembly syntax, 9 analysis.idc script, 196
; (semicolon) AnalyzeArea function, 556
for comments, 103 analyzer, in processor module, 366,
for IDC statements, 252-253 371-376
anterior lines, for comments, 110
A anti-debugging, and x86emu plug-in,

454-455

Abort command, .205 anti-dynamic analysis techniques,
accept_file function, 349 433-437

activation record, 67n. See also stacks, debugger detection, 435-436

debugging prevention, 436-437
instrumentation detection, 435
virtualization detection, 433-435
; anti-reverse engineering, 418, 542
AddCodeXref func.tlon, 556 anti-static analysis techniques, 418—432
AddConstEx fun.ctlon, 556 disassembly desynchronization,
add_dref function, 570 418-491

add_entry f'unction,.353 dynamically computed target
AddEntryPoint function, 556 addresses, 421-497

AddEnun functio?l, 556 imported function obfuscation,
AddHotkey function, 258, 556 498-439
add_segm function, 302, 303, 352 targeted attacks on analysis tools, 432

add_segn_ex functlofl, 302 API functions, signature information
AddSourceFile function, 556 for, 228

add_struc function, 301
AddStrucEx function, 556
add_struc_member function, 301
AddStrucMembe.r function, 556 Applysig function, 556

add_til funct19ns, 356 ar-style libraries, extracting information
add_til2 function, 356 from, 232

add_types function, 356-357

frames
add_auto_stkpnt2 function, 378
AddBpt function, 512, 556
AddBptEx function, 512, 556

AppendFchunk function, 556
application, for debugging process
setup, 549

578

INDEX

area control block, 304
areacb_t data structure, 303
area. hpp file, 285, 303
area_t struct, 296
arg_ prefix for function parameters, 97
arithmetic instructions, 11
ARM processor, 48
Array size dialog, 127
arrays, 126-128
globally allocated, 132-133
heap-allocated, 135-136
IDC functions for manipulating,
256-257
iterating over contents for netnodes,
294-295
member access, 131-136
in netnode, 289
storing primary value within, 291
stack-allocated, 133-135
of structures, 141-142
arrows window, in text view, 67
ASCII string data window, 125
ASCII strings, 69
determining reference to, 168
ash global variable, 385
AskAddr function, 556
AskFile function, 260, 556
askfile_c function, 299
AskIdent function, 556
AskingUsingForm c function, 299-300
AskLong function, 556
AskSeg function, 556
AskSelector function, 556
AskStr function, 260, 556
askstr function, 299
AskUsingForm_c function, 331
AskYN function, 260, 556
askyn_c function, 299
ASM files, 242243
asms array, 387
asm_t structure, 388
ASPack, 426
ASProtect, 426
Assemble Instruction dialog, 239-241
assembler, 4
assembly code, custom, 91
assembly languages, 4
creating mnemonic list for dis-
assembly module, 367
emulating behavior, 274-277
asynchronous interaction, with
debugger, 519

AT&T format, 8-9

atoa function, 570

atol function, 261, 570

attaching debuggers, to running

process, 498—-499

AttachProcess function, 556

attributes of functions, editing, 117-120

auto keyword (IDC), 252

autocomments, 234
customizing, 112

autogenerated names, 69, 104
for named location, 106

auto. hitp file, 285

AutoMark function, 556

AutoMark2 function, 556

autonomous mode, for IDA, 196

AutoShow function, 556

AutoUnmark function, 556

backdoor communication channels, in
virtualization platforms, 434
background color, of graph node, 185
backward navigation, 85
bad instruction <BAD> marks, 112-113
base address
of array, 132
of IDA image, modifying, 47
specifying for program, 341
base2file function, 354
basic blocks, 63n, 176, 177
Batch function, 556
batch-processing mode, 187, 195-196
BDS (Binary Diffing Suite), 467
BeginEA function, 556
beginner mode, for IDA, 206
big-endian CPU, 107
bin directory, for SDK, 281
binary data file, 44
binary diffing, 467
Binary Diffing Suite (BDS), 467
Binary File, in loader list, 47
Binary File Descriptor library (libbfd), 24
binary files, 4
comparing changes in revision,
466-467
vs. database files, 238
dynamic de-obfuscation, 522
loader for, 47-49
as only recognized file type, 337-338
release vs. debug, 412-414

static de-obfuscation, 438—-455
emulation-oriented
de-obfuscation, 443-455
scripted-oriented de-obfuscation,
438-443
stripping, 18
binary image, reverse enginnering, 339
binary large object (blob), 289n
binary reverse engineering, 417
binary searches, 101-102
for byte sequence, 473
BinDiff, 467
BinNavi, 186, 484
blacklist of users, 34
blob (binary large object), 289n
blocking operation, 280
blocks of code, signatures for
identifying, 76
Borland tools
compiler, IDA and, 403
and FILE pointer, 354
free command-line compiler,
410-411
Turbo Assembler (TASM), 9
BOUNDS problem, 78
BP-based frame, 119-120
bpt_NtContinue function, 543-544
branching instructions, 11-12, 171
breakpoint function, implementing,
535-536
Breakpoint Settings dialog, 507
breakpoints, 177
in emulator operation, 446
in IDA debugger, 499, 505-508
software, 437
bss section, 72
btree nodes, netnode content
storage in, 289
buffer overflow, 270, 470
Bug Scan appliance, 458
bugs, reporting, 58
BugScam, 463
build environment, configuring, 283
Burneye, 426
de-obfuscation, 448-453
program encryption with, 438-443
byte code, 4
Python, 364-365
Byte function, 259, 557
byte offset, to field, 145
byte patched notification code, 316
bytes.hpp file, 285, 385

byteValue function, 570
byte_xxxxxx autogenerated names, 69

C
C

calling convention, 87-89
in nm utility output, 21
parsing declarations, 150-151
parsing header files, 151-152
C++
calling convention, 90
class definitions, 157-158
compilers
reverse enginnering references,
165-166
type information embedded,
163, 404
libraries, 280
reversing primer, 156-166
c++filt utility, 25
call flow, 64n, 169, 171
CALL instruction (x86), 86
emulator determination of target
address, 450
callback function, 518-519
called functions, 86
recursive descent failure on return
from, 12
calling conventions, 86, 87-91
alternative for different compilers,
414-415
callui function, 299
CanExceptionContinue function, 557
canonical feature flags, 367
case sensitivity, in hex search, 102
catalog of named constants, 114
cdecl calling convention, 87
cdecl functions, 118
_cdecl modifier, 87
cfg directory, 38, 201
Change segment attributes dialog, 525
character buffer, writing display text
into, 380
character-terminated strings, 124
charset function, 294
charval function, 294
charvals, 291, 294
C_HEADER_PATH option, in ida.cfg file, 203
checkbox controls, on forms, 333
choose function, 327
choose2 function, 327, 329-330, 542
ChooseFunction function, 557

INDEX 579

580

INDEX

class connector function, 1607
.class file (Java), magic numbers to
identify, 16
classification tools, 16—-20
file command, 16-18
PE Tools, 18-19
PEiD, 19-20
cleanup code, 161
closing database files, 52-53
cmd variable, 871
cmd. exe, terminal, 189
cmd.Operands array, 373, 376
CmtIndent function, 557
code
basic transformations, 110-122
code display options, 111-113
converting data to code, 121-122
formatting instruction operands,
114-115
manipulating functions, 115-121
cleanup, 161
custom assembly, 91
display options, 111-113
obfuscated. See also obfuscated code
analysis
and compiler identification, 214
signatures for identifying blocks, 76
code cross-references, 168, 169-171
IDA addition of, 462
IDC functions for, 264
SDK functions for, 303
CODE XREF, 169
collabREate, 488-491
capabilities by IDA version, 489
collapsed node demo, 186
collapsing blocks, 66
collisions. See FLIRT
color
assigning to node, 185
coding for names, 68
in IDA display, 207-208
in Linux console mode, 191
LST files with HTML tags, 245
in navigation band, 55
for output line portion, 380
COMMAND function, 517
command line, for IDA, 204
comment.cmt file, 235
CommentEx function, 267, 557
comments
customizing, 112
embedding in databases, 108-110

function, 110
IDC command dialog and, 254
IDC script for locating and
tagging, 460
mangled names as, 162
for plug-ins, 311
predefined, with loadint utilities,
234-236
for processor modules, 382-383
for signature files, 212
for structure field, 145
in text view, 67
Comments function, 557
compact_til function, 358
compilation, as lossy process, 5
Compile function, 557
compiler differences
alternative calling conventions,
414-415
debug vs. release binaries, 412-414
jump tables and switch statements,
400-404
main function location, 405-412
RTTI implementations, 404
compilers, 4
determining which for building
executable, 19
identification
in IDA initial analysis, 51
and obfuscated code, 214
startup sequences, 76
validation, 7
compound statements, in IDC
scripts, 253
compression
of database component files, 52
of obfuscated programs, 525
computer licenses, 33
concrete classes, 158
conditional branching instructions,
11,171
conditional breakpoints, 506
creating, 507
on NtContinue function, 543
conditional jumps, 64
in text view, 67
configuration files, 201-207
exceptions.cfg file, 539
ida.cfgfile, 202-203
idagui.cfgftile, 202, 203-206, 238, 251
hotkey configuration, 204-205
idatui.cfgfile, 202, 206-207

idauser.cfg file, 203
plugins.cfg file, 323
connect function, 129
console configuration file, 206207
console version of IDA, 187-195
common features, 188-189
Linux console specifics, 190-192
OS X systems, 192-195
console-mode debugging, 545-547
constructor, actions, 161
CONTEXT structure (Windows), 422n, 424
context-sensitive menus, 62
for hex display, 72
for IDA summary view, 97-98
Continue command, in IDA
debugger, 504
control flow
hiding, 422
and recursive descent assembly, 11
control flow graphs, 169
Cooper, Jeremy, 191
core fonts project, 197
corrupt database files, 49
C_PREDEFINE_MACROS option, in ida.cfg
file, 203
CPU instruction pointer, and instruc-
tion classification, 11
CPU instructions, undocumented,
112-113
CPU type, PE header indicating
target, 341
Create a new segment dialog, 343
Create structure/union dialog, 144
CreateArray function, 256, 257, 295, 557
CREATE_BACKUPS option, in ida.cfg
file, 202
create_filename_cmt funciton, 353
CreateNetnode function, 325-326
CreateThread function, 454
cross-references, 168-176
determining type of, 306
display window, 174
enumerating, 269-271, 306-308
generating from emulator, 377
graphs
custom, 181-184
legacy, 180-181
lists, 173-175
as navigational targets, 83
in text view, 67
current instruction location, 372

current position indicator, 55, 57
custom assembly code, 91

custom cross-reference graphs, 181-184
custom_ana notification code, 393
custom_emu notification code, 393
custom_mnem notification code, 393
custom_out notification code, 393
custom_outop notification code, 393
Cygwin tools for Windows, 16, 17

D

D, in nm utility output, 21
DarunGrim plug-in, 468
data
carousel, 123, 145
converting to code, 121-122
cross-references, 168, 171-173, 460
IDC functions for, 265
SDK functions for, 303-304
instructions mixed with, 8, 10
manipulation, IDC functions for,
265-266
structures
layout of, 74
recognizing use, 131-142
transformations, 122-128
specifying data sizes, 123-124
data displays, 55, 62-71
Enums window, 75
Exports window, 73
Function Calls window, 77-78
Functions window, 74
Hex View window, 72
binary search of content
portion, 101
synchronized with disassembly
view, 72
IDA text view, 66—-67
IDA View-EIP disassembly window,
501-502
IDA View-ESP window, 502
IDA-View data display, 55, 62-67
graph view for, 63-66
opening multiple, 66
synchronized with hex view, 72
Imports window, 73
message window, 62, 69
in console-mode IDA, 188
dumping list of allocated heap
blocks to, 454
in IDA Desktop, 56

INDEX 581

582

INDEX

data displays, continued
Names window, 55, 62, 68-69
adding name to, 106
in IDA Desktop, 56, 57
Problems window, 78
Segments window, 75-76
Signature window, 76-77
Strings window, 55, 62, 70-71
in IDA Desktop, 56, 57
refreshing content, 442
Structures window, 74-75, 143
tool tips, 1307
Type Libraries window, 77
data flow analysis, 462-463
DATA XREF, 169
database addresses, dumping in file, 453
database events, 315
database files, 49-54
automated synchronization of
changes for multiple users, 485
vs. binary files, 238
changing word in, 239
closing, 52-53
corrupt, 49
creating, 50-51
discarding changes, 53
emulator utilization of, 444
functions for accessing flags for
address in, 385
IDA debugger and, 523-524
making changes to, 57-58
opening, and loading plug-in, 312
patching limitations, 240-241
reopening, 53-54
restoring after crash, 53
SDK functions for access, 298-299
searching, 100-102
IDC functions for, 266-267
text searches, 101
version incompatibility, 490
database names manipulation
IDC functions for, 262-263
SDK functions for, 300
database segments, emulator creation
of, 445
database-patching menu, 204
datatypes, 122, 296-298
associating with variable, 130
information in initial analysis, 51
db, 100, 123
dbg.hpp file, 286, 517

dbs.py file (IDA Sync), 486, 487
dd, 100, 123
de-obfuscation. See also obfuscated code
analysis
emulation-oriented, 443—-455
emulator-assisted, 448-453
mark for end, 522
scripted-oriented, 438—443
dead listing, 24, 81
Debug application setup dialog,
548-549
debug binaries, vs. release binaries,
412-414
Debug menu
» Open Subviews, 545
» Show App Screen, 546
debug registers (x86), 424n
debugger events, 315
Debugger menu
» Attach to Process, 499
» Debugger Options, 538
» Module List, 503
» Process Options, 548
» Run, 499
» Run to Cursor, 499
» Stack Trace, 511
» Start Process, 499, 500
» Take Memory Snapshot, 524
» Tracing, » Instruction Tracing, 508
Debugger setup dialog, 538-539
debugger-assisted de-obfuscation,
background, 522-523
debuggers, 15. See also IDA debugger
console-mode, 545-547
detection, 435-436
function naming scheme, 531
generating listings within, 7
hiding, 533-538
preventing, 436-437
redesign in version 5.3, 574
remote, 547-550
script to launch, 528-529
debugging information, objdump to
display, 24
DECISION problem, 78
declarations, 67
parsing C structure, 150-151
decompilers, 5
Hex-Rays, 480
decompression, simple loops, 526-530
decryption, simple loops, 526-530
dedicated frame pointer, 94

deep inspection tools, 27-29
.deffile extension, 389
default magic file, 16
default name, of variable,
reverting to, 105
DEFAULT_FILE_FILTER option, 206
DEFCON Capture the Flag binary, code
extraction from, 275
#define directive, 114, 151, 254
DelArrayElement function, 257, 557
DelBpt function, 512, 557
DelCodeXref function, 557
DelConstEx function, 557
del_dref function, 570
DelEnum function, 557
DeleteAll function, 557
DeleteArray function, 257, 557
deleting
functions, 116
netnodes, 295-296
DelExtLnA function, 557
DelExtLnB function, 557
DelFixup function, 557
DelFunction function, 557
DelHashElement function, 557
DelHiddenArea function, 557
DelHotkey function, 557
DellLineNumber function, 557
DelSelector function, 557
DelSourceFile function, 557
DelStruc function, 557
DelStrucMember function, 557
DelXML function, 557
Demangle function, 557
Demangled C++ Names dialog, 162
demonstration copy of IDA, 33
demo_stackframe function, disassembly, 96
destructor, 1607, 161
desynchronization of disassembly,
418-421, 425
DetachProcess function, 557
detail view, for function’s stack frame, 95
device drivers, platform dependence of
code, 7
Dfirst function, 265, 557
DfirstB function, 265, 557
dialogs, 39
creating with SDK, 331-335
DIF files, IDA-generated, 244
diff utility, 466
DiffingSuiteSetup.exe, 467

directories. See also individual directory
names
for created loader binaries, 355
for debugging process setup, 549
IDA layout, 37-39
for plug-ins, 319-320
for SDK, 281-283
disassemblers, 5, 28—29
disassembly
basics, b
crossreference information in
listing, 169
desynchronization, 418-421
warning during, 529
determining where to begin, 9
line components, 111-113
IDC functions for, 267
options controlling lines, 202
output lines in listing, 380
process, 7-14
basic algorithm, 8-9
linear sweep disassembly, 9-11
recursive descent assembly, 11-14
purpose of tools, 6-7
structure notation for readability, 150
techniques to prevent, 522
theory, 4
window, b5. See also IDA-View data
display
in console IDA, 188
disassembly manipulation
basic code transformations, 110-122
code display options, 111-113
converting data to code, 121-122
formatting instruction operands,
114-115
manipulating functions, 115-121
basic data transformations, 122-128
arrays, 126-128
specifying data sizes, 123-124
strings, 124-126
comments, 108-110
names, 104-108
discarding changes to database files, 53
disclosure, of vulnerability to public, 465
discovery, of vulnerability, 465
diskio.hpp file, 351, 362
dispatcher function, 299
DISPLAY_COMMAND_LINE option, 204, 206, 251
DISPLAY_PATCH_SUBMENU option, 204, 206
displays. See data displays
diStorm utility, 28

INDEX 583

584

INDEX

dll2idt. exe, 232
Dnext function, 265, 557
DnextB function, 265, 557
documentation
for IDA Pro, 34
searching through, 284
dollar sign ($), in AT&T assembly

syntax, 9
dont_use_snprintf, 285
dos. ldw, 46

double word, 100
double-click navigation, 82-83
d_out function, 384
downloading, IDA purchased copy, 34
DRO-7 registers, 505
dummy names, 104. See also auto-
generated names
dumpbin utility, 23, 25
for obfuscation, 428
“dup” construct, 128
dw, 100, 123
Dword function, 259, 439, 557
dword_xxxxxx autogenerated names, 69
dynamic
analysis, 6, 433
linking, 22-23
memory allocation, for heap-
allocated arrays, 135
dynamically computed target addresses,
421-427
dynamically linked binary, 178
dynamic_cast operator, 164

EAX register, 11-12, 93
EBP (extended base pointer)
register, 93
ECX register, 93
use in compiled C++, 157
Edit Function dialog, 118
Edit menu
» Comments, 108
» Expand Struct Type, 146
» Functions
» Create Function, 116
» Delete Function, 116
» Patch Program, 204, 238-241
» Assembler, 239
» Change Byte, 238-239
» Plugins, 316

» Segments
» Create Segment, 343, 345
» Move Current Segment, 344
» Rebase Program, 341
» Shrink Struct Type, 146
» Strings, 124
» Undefine, 121-122
EDX register, 93
eEye Digital Security, 467-468
elements, number in array, 127
ELF. See Executable and Linking
Format (ELF)
#else directive, 255
embedded strings, searching for, 27, 101
emu function, 376
emu.cpp file, 376
Emulate menu » Windows » Set Import
Address Save Point, 453
emulation-oriented de-obfuscation,
443-455
emulator
database segments creation, 445
database utilization, 444
output generation in message
window, 452
in processor module, 366, 376-379
for Python processor, 379
EnableBpt function, 557
EnableTracing function, 514, 558
encryption, of obfuscated programs, 525
end address, of functions, 118
endEA data member, 296
#endif directive, 255
entry points. See main function; program
entry point
entry. hpp file, 286, 362
enumerated constants set, defined, 368
Enums window, 75
epilogue, of function, 87
Erdelyi, Gergely, 481
error handling, in IDC scripts, 255-256
ESC key, 62, 85
etc directory, for SDK, 282
Eval function, 558
event notification, in plug-ins, 315-316
exception handlers
in remote debugging, 550
tracing, 540-542
in Windows-oriented malware,
422-424
Exception handling dialog, 539

exceptions
in IDA debugger, 538-544
intentionally generating, 436
passing to application, 540
Exceptions configuration dialog, 539
exceptions.cfg file, 539
exclusions files, 222
EXE files, IDA-generated, 243-244
Exec function, 558

Executable and Linking Format (ELF), 8

file command information on, 17
loader, 395
search for instructions, 472
executable files, obfuscation, 19
execute breakpoints, 506
execution traces, 508
exe.sig file, 405
Exit function, 558
exploit-development process, 469-475
finding useful virtual addresses,
47%-475
instruction sequences location,
472-473
for patched vulnerability, 466
stack frame breakdown, 470472
export ordinal number, 73n
exported functions, enumerating, 272
Exports window, 73
expressions
for IDA breakpoint conditions,
507-508
in IDC scripts, 252
exprhpp file, 286, 325, 575

extended base pointer (EBP) register, 93

extlang_t structure, 575
ExtLinA function, 558
ExtLinB function, 558

F

Falliere, Nicolas, 436, 533-534, 536, 537

far address for flow, 169

far functions, 119

Fast Library Identification and Recog-
nition Technology. See FLIRT

fastcall convention (x86), 89-90

Fatal function, 558

fclose function, 261, 570

fgetc function, 262, 570

field names, in structures, 136

fields, adding to structure, 145

file analysis, for unknown file format,
338-339
file command, 16-18
information on ELF, 17
limitations, 18
file extensions, configuration, 203
file headers, loading, 153
file input/output, IDC functions for,
261-262
File menu
» IDC Command, 250
» IDC File, 250
» Load File
» FLIRT Signature File, 214, 223
» IDS File, 233
» Parse C Header File, 151
» Produce File, 241
» Create C File, 480
» Create EXE File, 347
file pointers, and IDA, 354
FILE stream, 354
file utility, 218-219
file2base function, 352, 353, 358
FileAlignment field, 342
FILE_EXTENSIONS option, 205, 206
filelength function, 262, 570
file-loading dialog, 337
Filemon utility, 435
filename extensions, 16
files, listing entry points into, 73
filetypes
associating extensions with, 205
identifying, 16, 45
FindBinary function, 266, 558
FindCode function, 266, 269, 558
FindData function, 266, 558
FindExplored function, 558
FindFuncEnd function, 558
FindImmediate function, 558
FindSelector function, 558
findStackBuffers function, 463—-465
FindText function, 266, 558
FindUnexplored function, 558
FindVoid function, 558
first-generation programming
languages, 4
FirstFuncFchunk function, 558
FirstSeg function, 558
fixed-argument functions, stdcall
convention for, 89
fix_proc utility, 390
flagCalls function, 462

INDEX 585

586

INDEX

flags, in Functions window, 74
flags field
for loader module, 349
for plug-ins, 311
FLAIR. See FLIRT
Slair52.zip file, 216
Flake, Halvar, 186, 463
FLIRT (Fast Library Identification and
Recognition Technology),
38, 212
applying signatures, 212-216
collisions
resolution for, 223
in signature generation, 221
creating signature files, 216-225
f_LOADER file type, 395
floating-point values, in IDC scripts, 251
flowcharts, legacy, 177-178
flows, 169-171
colored arrows for, 64
Follow TCP Stream command
(Wireshark), 476
FontForge, 197
fonts, 58
for Wine, 197
fopen function, 261, 570
for loops, 252
forking new project, in CollabREate, 491
form function, 261, 570
formatting, removing, 121
forms, creating customized with SDK,
331-335
forums, 35
4-byte overwrite, 474
fourth-generation programming
languages, 4
fprintf function, 262, 570
Jpro.h file, 286
fputc function, 262, 570
frame pointer, 867
dedicated, 94
delta, 119
Jframe.hpp file, 286, 300
FreeType, 197
freeware version of IDA, 32-33, 551-553
restrictions, 552
fseek function, 570
ftell function, 570
Sfuncs.hpp file, 286, 300
func_t class, 296
Function Calls window, 77-78

function-oriented control flow
graph, 184
functions, 85, 115-121
addresses, array as import table, 452
argument identification in initial
analysis, 51
attributes of, editing, 117-120
augmenting information, 228-234
call graphs, 77, 169, 178-180
call instructions, 12
call tree, 77
calls, 86
cross-reference listing for, 175
chunks, 116-117, 296
comments, 110
creating, 115-116
debugger naming scheme for, 531
deleting, 116
enumerating, 268, 304-305
epilogue of, 87
finding callable address, 460-461
IDC mapped to SDK, 555-572
information in .ids files, 230
locating all with stack-allocated
buffers, 463-465
in Name window, 68
neighbors of, 77
new in version 5.3, 574
overloading, mechanism for differen-
tiating versions, 25
overloaded versions of, 162
parameter placement on stack, 87
prologue of, 87
renaming based on signature,
214-215
return instructions, 13-14
in SDK, 298-304
code cross-references, 303
data cross-references, 303-304
for database access, 298—299
database names manipulation, 300
function manipulation, 300-301
for manipulating, 300-301
segment manipulation, 302-303
structure manipulation, 301
user interface, 299-300
storing addresses of dynamically
linked library, 474
tails, 117
tracing, 508
type signatures, generating, 229

Functions window, 74
fuzzing, 6n

G

Gaobot worm, 19
garbage collection, 52
gcc/Cygwin binary, startup routine
from, 408
gdb (GNU debugger), 11, 540
ptrace API use, 437
GDL (Graph Description
Language), 176
gdl.hpp file, 286
GenCallGdl function, 558
General Registers window, 502-503
GenerateFile function, 558
GenFuncGdl function, 558
GetArrayElement function, 257, 558
GetArrayId function, 256, 558
GetBmaskCmt function, 558
GetBmaskName function, 558
GetBptAttr function, 513, 559
GetBptEA function, 512, 559
GetBptQty function, 512, 559
get_byte function, 298
GetCharPrm function, 559
GetColor function, 559
GetCommandLine function, 410, 411
GetConstBmask function, 559
GetConstByName function, 559
GetConstCmt function, 559
GetConstEnum function, 559
GetConstEx function, 559
GetConstName function, 559
GetConstValue function, 559
GetCurrentLine function, 559
GetCurrentThreadId function, 559
GetDebuggerEvent function, 514-515, 559
GetDisasm function, 267, 559
GetEntryOrdinal function, 272, 559
GetEntryPoint function, 272, 559
GetEntryPointQty function, 272, 559
GetEnum function, 559
GetEnumCmt function, 559
GetEnumFlag function, 559
GetEnumIdx function, 559
GetEnumName function, 559
GetEnumQty function, 559
GetEnumSize function, 559
GetEnvironmentStrings Windows API
function, 411

GetEvent function, 514
GetEventBptHardwareEa function, 559
GetEventEa function, 560
GetEventExceptionCode function, 560
GetEventExceptionEa function, 560
GetEventExceptionInfo function, 560
GetEventExitCode function, 560
GetEventId function, 560
GetEventInfo function, 560
GetEventModuleBase function, 560
GetEventModuleName function, 560
GetEventModuleSize function, 560
GetEventPid function, 560
GetEventTid function, 560
GetFchunkAttr function, 560
GetFirstBmask function, 560
GetFirstConst function, 560
get_first_cref_from function, 303
get_first_cref_to function, 303
get_first dref_from function, 303
get_first_dref_to function, 303
GetFirstHashKey function, 560
GetFirstIndex function, 560
GetFirstMember function, 560
GetFirstModule function, 560
GetFirstStrucIdx function, 560
GetFixupTgtDispl function, 560
GetFixupTgtoff function, 560
GetFixupTgtSel function, 560
GetFixupTgtType function, 560
GetFlags function, 560

GetFpNum function, 560

GetFrame function, 268, 560
get_frame function, 301
GetFrameArgsSize function, 560
GetFramelvarSize function, 471, 560
GetFrameRegsSize function, 471, 560
GetFrameSize function, 561

get_func function, 300

getFuncAddr function, 460-461
get_func_name function, 300
GetFuncOffset function, 561
get_func_qty function, 300
GetFunctionAttr function, 263, 269, 561
GetFunctionCmt function, 561
GetFunctionFlags function, 274, 561
GetFunctionName function, 263, 561
GetHashLong function, 561
GetHashString function, 561
GetIdaDirectory function, 561
GetIdbPath function, 561
GetInputFile function, 272, 561

INDEX 587

588

INDEX

GetInputFilePath function, 561
GetLastBmask function, 561
GetLastConst function, 561
GetLastHashkey function, 561
GetLastIndex function, 561
GetLastMember function, 561
GetLastStrucIdx function, 561
GetLineNumber function, 561
GetLocalType function, 561
GetLocalTypeName function, 561
get_long function, 298
GetLongPrm function, 561
getmainargs library function, 409
GetManualInsn function, 561
get_many_bytes function, 298
GetMarkComment function, 561
GetMaxLocalType function, 561
get_member function, 301
GetMemberComment function, 562
GetMemberFlag function, 562
GetMemberName function, 562
GetMemberOffset function, 268, 562
GetMemberQty function, 562
GetMemberSize function, 464, 562
GetMemberStrId function, 562
GetMnem function, 267, 562
GetModuleName function, 562
GetModuleSize function, 562
get_name function, 300
get_name_ea function, 300
getn_area function, 304

GetnEnum function, 564
get_next_area function, 304
GetNextBmask function, 562
GetNextConst function, 562
get_next_cref_from function, 303
get_next_cref_to function, 303
get_next_dref_from function, 303
get_next_dref_to function, 303
GetNextFixupEA function, 562
GetNextHashKey function, 562
GetNextIndex function, 562
GetNextModule function, 562
GetNextStrucIdx function, 562
getn_next_func function, 300
getnseg function, 302
getopcode.c program, 472
GetOperandValue function, 267, 562
GetOpnd function, 267, 562
GetOpType function, 267, 562
get_original byte function, 298
GetOriginalByte function, 563

get_original long function, 299
get_original word function, 299
GetPrevBmask function, 563
GetPrevConst function, 563
GetPrevFixupEA function, 563
GetPrevHashKey function, 563
GetPrevIndex function, 563
GetPrevStrucIdx function, 563

GetProcAddress function, 428, 430, 451,

452n, 530
GetProcessName function, 563
GetProcessPid function, 563
GetProcessQty function, 563
GetProcessState function, 563
GetReg function, 563
get_reg val function, 519
GetRegValue function, 507, 512, 563
get_screen_ea function, 300
getseg function, 302
GetSegmentAttr function, 563
get_segm by name function, 302
get_segm name function, 302, 303
get_segm gty function, 302
GetShortPrm function, 563
GetSourceFile function, 563
GetSpd function, 563
GetSpDiff function, 563
GetString function, 563
GetStringType function, 563
get_struc function, 301
GetStrucComment function, 563
get_struc_id function, 301
GetStrucId function, 563
GetStrucIdByName function, 563
GetStrucIdx function, 563
GetStrucName function, 563
GetStrucNextOff function, 563
GetStrucPrevoff function, 563
GetStrucQty function, 563
GetStrucSize function, 268
get_struc_size function, 301
GetStrucSize function, 563
GetThreadId function, 563
GetThreadQty function, 563
GetTrueName function, 563
GetTrueNameEx function, 564
get_true_segm_name function, 303
GetType function, 564
GetVxdFuncName function, 564
get_word function, 298
GetXML function, 564
Gigapede, 523

gl_comm global variable, 382-383
global arrays
and netnodes, 295
in offset cross-references, 173
possible uses for, 257
global offset table (GOT), 474
global persistent arrays, 256
global variables, 69
formatting as structures, 150
IDC and, 252
globally allocated arrays, 132-133
globally allocated structures, 138
Gnome gnome-terminal, 191
gnome terminal, 193
GNU
Assembler, 9
binutils tool suite, 24
debugger (gdb), 11, 540
ptrace API use, 437
gcc/g++ compiler, 88-89, 90
vs. Microsoft Visual C/C++
compiler, 161
and pack pragma, 137
regparm keyword in, 91
Go button, in welcome screen, 45
GOT (global offset table), 474
Graph Description Language
(GDL), 176
graph modes
user interface, 184-185
viewing cross-reference
comments in, 185
Graph Overview window, 64
graph theory, 168
graph view
for disassembly view, 55, 63—-66
line prefixes in, 65
rearranging blocks within, 66
switching between text view and, 184
graph view node, 185
graphical user interface. See GUI
graphing, 176-186
custom cross-reference graphs,
181-184
integrated graph view, 184-186
legacy call, 178-180
legacy cross-reference, 180-181
user xref charts, 181-183
GRAPH_VISUALIZER option, in ida.cfg
file, 202
grep, 284
grouping blocks, 66

grouping nodes within graph, 185-186
Gudmundsson, Atli Mar, 244
GuessType function, 564
GUI (graphical user interface), 39
default behavior, 203
on non-Windows platforms, 196-197
Guilfanov, Ilfak, 31, 530, 540, 542
blog of, 35
gunzip, 37

Hall of Shame, 32
hardware abstraction layers,
detection, 434
hardware-assisted breakpoints,
505-507, 526
hash value, resolving function
names with, 431
hashset function, 294
hashstr function, 294
hashval function, 294
hashval_long function, 294
hashvals, 291, 294
hasName function, 570
hasvalue function, 570
HBGary, 458
head command, 212n
header files, 280, 284288
in C, parsing, 151-152
headers, objdump to display, 23
.headers program segment, 445
heap blocks, dumping list to message
window, 454
.heap database segment, 445
heap-allocated
arrays, 135-136
objects, destructors, 161
structures, 139-141
help, for IDA Pro, 34
helper function, to format and output
instruction operand, 380
HELPFILE option, 203-204
hex dumps, 189
Hex-Rays, 31, 573
demo version of IDA, 551
download site, 227, 479
free version of IDA, 551-553
restrictions, 552
Research & Resouces forum, 283
submitting bug reports, 58
Hex-Rays decompiler, 480-481

INDEX 589

590

INDEX

Hex View window, 72

binary search of content portion, 101

synchronized with disassembly
view, 72
hexadecimal constants, 114
hexadecimal values, and navigation, 83
HideArea function, 564
HideDebugger.idc script, 538
hiding debuggers, 533-538
HighVoids function, 564
HKEY_CURRENT_USER\Software\Hex-Rays\IDA,
44, 207

hook_to_notification_point function, 315
hostname, for remote debugging, 549
hotkeys, 39

associating scripts with, 258

in console IDA, 188

for Linux, 190

for IDA Sync, 486

mapping, 203
.hpp file extension, 284
HTML files, IDA-generated, 245

.id0 file, 49
.id1 file, 49
IDA Application Programming
Interface, 284-308
header files, 284-288
iteration techniques, 304-308
enumerating cross-references,
306-308
enumerating functions, 304-305
enumerating structure members,
305-306
netnodes, 288-296
creating, 289-291
data storage, 291-295
declaring, 290
deleting, 295-296
IDA Colors dialog, 208
IDA debugger, 497-519
automating tasks, 512-519
with plug-ins, 517-519
scripts with IDC, 512-517
databases and, 523-524
displays, 501-503
exceptions, 538-544
instruction pointer warning, 529
launching, 498-500

for obfuscated code, 525-544
process control, 504-511
breakpoints, 505-508
stack traces, 511
tracing, 508-510
watches, 511
shortcoming, 540
IDA Desktop, 54-56
during initial analysis, 56-58
tips and tricks, 58
IDA freeware, 32-33, 551-553
restrictions, 552
IDA loader modules, 51
IDA Options dialog
Analysis tab, 388
Disassembly tab, 111
Graph tab, 56
Strings tab, 125
IDA Palace, 35
IDA Plug-in Writing in C/C++
(Micallef), 283
IDA Pro (Interactive Disassembler
Professional)
basics, 31-32
crashes, database restore after, 53
directory layout, 37-39
file loading, 46-47
and file pointers, 354
installation, 35—-39
launching, 44-46
loader modules, 347
new features in version 5.3, 573-575
obtaining, 32—-34
purchasing, 33-34
support resources, 34-35
upgrading, 34
versions, 33
IDA Software Development Kit (SDK)
basics, 279-283
collabREate plug-in integration, 490
configuring build environment, 283
creating customized forms, 331-335
datatypes, 296-298
directory structure, 281-283
functions, 298-304
code cross-references, 303
data cross-references, 303-304
for database access, 298—299
database names manipulation, 300
function manipulation, 300-301
segment manipulation, 302-303

structure manipulation, 301
user interface, 299-300
installing, 281
update in version 5.3, 574
IDA stack views, 95-100
IDA Sync, 485-488
IDA Text view, 66—67
IDA View-EIP disassembly window,
501-502
IDA View-ESP window, 502
idaadv directory, 37
ida.cfd file, 207
ida.cfg file, 202-203
idag.exe, 36, 189
running in batch mode, 195
idag64.exe, 189
running in batch mode, 195
idagui.cfg file, 202, 203-206, 238, 251
hotkey configuration, 204-205
ida.hilp, and loadint.exe, 235
ida.hpp file, 284, 286, 297
ida.idc file, 258
idaidp. hpp file, 366
idainfo struct, 297
ida.int file, 234
ida.key file, 32, 36, 190
copying to Mac, 192
idal executable file, 37
setting permissions and ownership,
546-547
idaldr.h header file, 351
idamake.pl script, 283, 318
IDAPython, 481-484
IDARub, 484-485
idarub.cpp file, 484
idastd directory, 37
ida_sync_server.py file, 486
idatui.cfg file, 202, 206-207
idauser.cfg file, 203
IDA-View data display, 55, 62-67
graph view for, 63-66
opening multiple, 66
synchronized with hex view, 72
idaw.exe, 36, 189
running in batch mode, 195
idaw64.exe, 189
running in batch mode, 195
ida-x86emu (x86emu) plug-in, 336,
444-445, 492
additional features, 453-454
and anti-debugging, 454-455

breakpoints, 446
control dialog, 445
emulator-assisted de-obfuscation,
448-453
functions emulated by, 451
initializing, 445-446
operation, 446-448
.idbfiles, 49, 52, 156
IDB_2_PAT utility, 221
IDC command dialog, 254
idc directory, 38
IDC language, 251-257
command-line option, 251
error handling, 255-256
expressions, 252
functions, 253-254, 258-267
for code cross-references, 264
for data cross-references, 265
data manipulation, 265-266
database names manipulation,
262-263
database search, 266-267
disassembly line components, 267
file input/output, 261-262
functions dealing with, 263
mapped to SDK, 555-572
for reading and modifying data,
259-260
string manipulation, 261
user interaction, 260
persistent data storage, 256-257
plug-ins for extending, 324-327
programs, 254-255
scripting debugger actions, 512-517
statements, 252-253
variables, 251-252
idc.idcfile, preprocessor directive to
include, 254
idc_value_t class, 297
idc_value_t SDK datatype, 326
Identifier search, 101
idp.hpp file, 286, 367, 385, 393
IDP_INTERFACE_VERSION constant, 310
ids directory, 38
.ids files, 228
basics, 230-231
creating, 232-234
IDS utilities, 228
idsnames text file, 233
idsutils utilities, 230, 232

INDEX 591

592

INDEX

.idt files, 230
script to generate, 272
syntax for, 232
zipids.exe utility to compress, 233
#ifdef directive, 255
Ignore option, for user xrefs chart, 183
Ilfak. See Guilfanov, Ilfak
.ilx file extension, 389
IMAGE_DOS_HEADER, 153-155, 340
IMAGE_NT_HEADERS structure, 153, 340, 342
IMAGE_SECTION_HEADER template, 342
import address save point, 453
import tables, 73n
adjusting names, 532
function addresses in array as, 452
reconstructing, 431, 530-533
validation on, 50
imported function table, restoration, 523
imported functions
editing, 121, 231
obfuscation, 428-432
imported name, 68
importing structures, 150-152
import_node netnode, 288
Imports window, 73
import_type function, 357
ImpREC (Import REConstruction)
utility, 523
INC (include) files, 243
#include directive, 254
and parsing header files, 151
resolving dependencies, 203
include directory, for SDK, 282
include header files, 284
Indent function, 564
INDENTATION option, in ida.cfg file, 202
indentation, with MakeLine function, 382
index value, for individual array
elements, 131
indexes, for array, 128
indirect code paths, recursive
descent and, 13
inf variable, 297
inheritance relationships, 164-165
init function pointer, in plug-in_t
class, 311
The initial autoanalysis has been finished
message, 57
initializing
objects, 161
plug-ins, 313-315

init_loader options function, 350, 352
inline functions, 165
input file, for debugging process
setup, 549
ins.cpp file, 367
ins.hpp file, 368
insn_t class, 297-298, 371
processor-dependent fields in, 374
installing
eEye Digital Security, 467
FLAIR utilities, 216
IDA Pro, 35-39
on OS X and Linux, 37
on Windows, 36
IDA Software Development Kit, 281
plug-ins, 322-323
third-party plug-ins, 480
install_make.ixt file, 283
nstall_visual.ixt file, 320
instruc_t structures, array of, 367
instructions
emulator. See emulator
enumerating, 268
formatting operands, 114-115
locating sequences, 472—473
mixing with data, 8, 10
operands, 373
tracing, 508
instrumentation, detection, 435
int 0x80 instruction, 91
int 3 instruction, 505
integers
formatting constants, 114
in IDC scripts, 251
integrated graph view, 184-186
Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, 507
Intel format, 8-9
Interactive Disassembler Professional.
SeeIDA Pro (Interactive Dis-
assembler Professional)
interrupt-handling routine, return
from, 419n
invoke_callbacks function, 386
iret instruction (x86), 419n
isBino function, 570
isBin1 function, 570
IsBitfield function, 564
isCharo function, 570
isChar1 function, 570
isCode function, 570
isData function, 570

IsDebugged field, of process environment
block, 534

IsDebuggerPresent function, 436, 451, 534

isDeco function, 571

isDec1 function, 571

isDefArgo function, 571

isDefArg1 function, 571

isEnumo function, 571

isEnumi function, 571

IsEventHandled function, 564

isExtra function, 571

isFlow function, 571

isFopo function, 571

isFop1 function, 571

isHead function, 571

isHexo function, 571

isHex1 function, 571

isLoaded function, 259, 260, 299, 571

isOcto function, 571

isOct1 function, 571

is0off function, 377

is0ffo function, 571

is0ff1 function, 571

isRef function, 571

isSego function, 571

isSeg1 function, 571

isStkvaro function, 571

isStkvari function, 571

isStroffo function, 571

isStroff1 function, 571

isTail function, 571

IsUnion function, 564

isUnknown function, 571

isvar function, 571

Itanium processor, IDA support for, 33

ItemEnd function, 564

ItemSize function, 564

iTERM, 193

J

ja (jump above) instruction, 402

JAL instruction (MIPS), 86

Java .class file, magic numbers to
identify, 16

Java loader, 361

jmp eax instruction, 11

jmp functions, 412-413

JPEG image file, magic numbers to
identify, 16

JR instruction (MIPS), 86

jump flow, 64n, 169, 171

processor flag for changing condi-
tional to absolute, 420
jump (jmp) functions, 412-413
Jump function, 260, 564
Jump menu
» Jump to Next Position, 85
» Jump to Previous Position, 84
» Jump to Problem, 204
jump tables, 10
for different compilers, 400-404
Jump to address dialog, 84
Jump to cross-reference dialog, 174
Jump to Cursor command, in
ida-x86emu plug-in, 447
jumpto function, 300
junk strings, 71

K

KDE konsole, 191
kernel32.dllfile, 430
kernwin.hpp file, 284, 286, 327, 332, 335
key files, 32
for Linux and Mac IDA
distributions, 190
for upgrade, 34
keyboard
hotkey mappings, 203
macro definition syntax, 206
preventing system from overriding
mappings, on OS X, 194-195
zoom control, 64
known extensions filter, 45

L

label, for form input field, 332
last-known good state of database, 53
launching

IDA debugger, 498-500

IDA Pro, 44-46
layout

of binary files, 48

of directories, 37-39

of local variables, 91
1dd (list dynamic dependencies) utility,

22-23

for obfuscation, 428
ldr directory, 282, 350
LDRF_RELOAD flag, for loader module, 349
LDSC loader_t object, 348
LDSC object, declaring, 351

INDEX 593

594

INDEX

ldw file extension, 355
legacy
call graphs, 178-180
cross-reference graphs, 180-181
flowcharts, 177-178
IDA graphing, 176-184
letter coding, for names, 68
libbfd (Binary File Descriptor library), 24
libc.a, 213
libc_FreeBSD61 .exc file, 222
_libc_start_main function, 407
libraries
binary variations of, 213
debugging, 550
identifying and acquiring static,
217-219
library functions, 68, 129, 211
calling conventions for, 91
categorizing, 76
flagging function as, 119
resolving location, 22
Trace Over, 510
library handles, 4517
libstdc++.50.5 shared library, 37, 190
Linux IDA installation and, 547n
libXXX.YYY directories, for SDK, 282
license for IDA, 32, 33
line prefixes
customizing, 112
in graph view, 65
LineA function, 564
linear sweep disassembly, 9-11
LineB function, 564
lines.hpp file, 286, 380, 382—-383
Linux
ELF, search for instructions, 472
IDA debugger, 546
IDA version, installation, 36, 37
.ilx file extension for, 389
overwriting executable files, 323
plug-in versions for, 483
Shiva ELF obfuscation tool for, 437
linux_server, 547
Linux-style command shell, for Win-
dows operating system, 17
list dynamic dependencies (1dd) utility,
22-23
List of available library modules
dialog, 214
list_callers function, 307-308
listing view, for disassembly view, 55
Liston, Tom, 435

Litchfield, David, 472
little-endian CPU, 10n
.llx file extension, 355
lnames array, 387
load string byte (lodsb) instruction, 441
LoadDebugger function, 564
loader modules, 347
alternative strategies, 361
building, 355
creating, 280
processor coupled with, 395
simpleton file format, 350-355
user input to file analysis, 50
writing, 348-360
loader segments, 524
loader. hpp file, 287, 310, 313, 362
loader_t struct layout defined in, 348
loaders directory, 38, 46, 347
loader_t object, 348
load_file function, 349, 352-353,
395-396
loadfile function, 262, 571
loading
plug-ins, 312
TIL files, 155
Loading Offset field, for Binary File
input format, 47
Loading Segment field, for Binary File
input format, 47
loadint utilities, 234—236
loadint.exe, and ida.hlp, 235
LoadLibrary function, 428, 430, 530
LoadLibraryA function, emulated
version, 451
load_pcap_file function, 358-360
LoadTil function, 564
local name, of named location, 106
Local Types subview, 150, 151
local variables, 97
identification in initial analysis, 51
layout, 91
space allocation for, 86
Local variables area, of functions, 118
LocByName function, 263, 271, 564
LocByNameEx function, 263, 564
loc_xxxxxx autogenerated names, 69
lodsb (load string byte) instruction, 441
logging, of trace events, 508
logical addresses, in .map files, 242
loops, 67
LowVoids function, 564
LPH object, function pointers, 386-387

LPH structure, initializing, 367-371
lread function, 352

lread4bytes function, 351-352

LST files, 243

1toa function, 261, 571

Mach-O loader, 395
machine languages, 4

display options, 113
Macintosh. See OS X systems
MackT, 523
MACRO keyword, 207
mac_server file, 546-547
magic numbers, 16
main function, 254

location for different compilers,

405-412

in G, vs. _start, 213
MakeAlign function, 564
MakeArray function, 564
MakeByte function, 266, 564
MakeCode function, 265, 564
MakeComm function, 266, 564
MakeData function, 564
MakeDouble function, 564
MakeDword function, 564
makefiles, 318-319

for Python processor, 391-392
MakeFloat function, 565
MakeFrame function, 565
MakeFunction function, 266, 565
MakeLine function, 381, 382
MakeLocal function, 565
MakeNameEx function, 263, 565
MakeOword function, 565
MakePackReal function, 565
MakeQword function, 565
MakeRptCmt function, 565
MakeStr function, 266, 565
MakeStructEx function, 565
MakeTbyte function, 565
MakeUnkn function, 265, 565
MakeUnknown function, 565
MakeVar function, 565
MakeWord function, 565
malloc, 159
malware, 50

analysis, 6

goal, 521
analysts, 399

danger of running, 522-523
embedded executables, 454
emulation vs. debugging, 444
exception handler in, 422-424
execution environment for, 433
infection of debugging machine, 500
obfuscation, 19
rules for working with, 525-526
Windows operating system and, 450
many-to-many operation,
compilation as, 5
.map files, 242
MarkPosition function, 565
MASM (Microsoft Assembler), 9
MaxEA function, 565
maximum possible size, of array, 127
MAX_NAMES_LENGTH option, in ida.cfg
file, 202
MDI (Windows Multiple Document
Interface), 331n
mem2base function, 359
member functions, calls to, 157
member_t class, 297, 301
memory. See also stacks, frames
layout of binary files, 48
references, reformatting for
reliability, 147
reserving block in emulation
heap, 454
snapshot, of running process by
debugger, 499
memory modification dialog
(x86emu), 448
Memory organization dialog, 48
Message function, 260, 565
message window, 62, 69
in console IDA, 188
dumping list to of allocated heap
blocks to, 454
in IDA Desktop, 56
Metakit embedded database library, 486
Metasploit project, 472, 475
methods, 85. See also functions
Micallef, Steve, 284
IDA Plug-in Writing in G/C++, 283
Microsoft, Patch Tuesday cycle of
updates, 458
Microsoft Assembler (MASM), 9
Microsoft Interface Definition
Language (MIDL), 492
Microsoft Knowledge Base, on
WinHelp, 204

INDEX 595

596

INDEX

Microsoft Visual C/C++ compiler, 89
disassembly listing for switch
statement, 402
vs. GNU g++, 161
and pack pragma, 137
Microsoft Visual Studio, dumpbin
utility, 25
mIDA plug-in, 335, 492-494
MIDL (Microsoft Interface Definition
Language), 492
MinEA function, 565
MIPS
binary, script to mimic behavior, 275
processor, 48
IDA support for, 33
mitigation, of vulnerability, 465
MK_FP function, 564
mkidp.exe utility, 389-390
mnemonics, 4
modal dialog, 175n, 331n
modeless dialog, 1757, 331n
modifying data, IDC functions for,
259-260
module directory, 282, 366
modules, 310
building using Unix-style tools, 283
Modules window, 503
mouse, support for console, 188, 189
mov statement, 130, 272
move_segm function, 349-350
MS-DOS header structure, for PE file,
153-154, 339-341
MS-DOS stub, 389, 390
MS-DOS.EXE loader, 46
msg function, 299
mutual ptrace, 437
MZ tag, in MS-DOS executable file
headers, 16n

nalt.hpp file, and netnodes use, 288
.nam file, 49
Name command, in IDA Sync, 486
Name function, 262, 565
NameChars option, 202
named
constants, in source code, 114
licenses, 33
locations, changing, 105-107
program locations, maximum name
length for, 202

NameEx function, 263, 565
name.hpp file, 287
names, 68
assigning to address of first instruc-
tion of node basic block, 185
decoration, 162
in disassemblies, 104-108
changing, 104
of functions, 117
mangling, 26, 162-163
register, 107-108
for trace log file, 509
Names window, 55, 62, 68—69
adding name to, 106
in IDA Desktop, 56, 57
NASM (Netwide Assembler), 9, 28
navigation, 81
basics, 82-85
history, 84-85
Jump to address dialog, 84
in Linux console version, 190
navigation band, 55, 57
navigational targets, cross-
references as, 83
ndisam utility, 28
near address for flow, 169
neighbors of function, 77
netnode class, 288—-289
netnode.hpp file, 287, 288, 289
netnodenumber, 288, 291
netnodes, 256, 288-296
creating, 289-291
data storage, 291-295
declaring, 290
deleting, 295-296
emulator state restored from, 446
and global arrays, 295
iterating over contents of array,
294-295
Netwide Assembler (NASM), 9, 28
network packets, shellcode in captures,
475-476
new operator, 159, 160
New option in welcome screen, 44-45
New Projects dialog (Visual Studio), 320
new_til function, 357
NextAddr function, 565
NextFchunk function, 565
NextFuncFchunk function, 565
NextFunction function, 263, 565
NextHead function, 565
NextNotTail function, 566

NextSeg function, 566
nm utility, 20-21
nodeidx_t operator, 290
nodes in graph, 168
non-Windows platforms, GUI interface
on, 196-197
NOP slides, 473, 474, 476
normal flow, 64n
notifications
plug-ins access to debugger, 517
for plug-ins intercepting calls to
processor, 393
for processor modules, 315, 385-386
unhooking, 316
of vulnerability to software
maintainer, 465
notify function, 385
NOVICE option, 206
NtContinue function, 542
conditional breakpoint on, 543
nidll.dll file, 534, 536
NtQueryInformationProcess function,
534-535
NtSetInformationThread function, 536

0

obfuscated code analysis, 417-455. See
also de-obfuscation
anti—dynamic analysis techniques,
433-437
debugger detection, 435-436
debugging prevention, 436-437
instrumentation detection, 435
virtualization detection, 433-435
anti-static analysis techniques,
418-432
disassembly desynchronization,
418-421
dynamically computed target
addresses, 421-427
imported function obfuscation,
428-432
targeted attacks on analysis
tools, 432
IDA debugger for, 525-544
static de-obfuscation of binaries,
438-455
emulation-oriented
de-obfuscation, 443-455
scripted-oriented de-obfuscation,
438-443

obfuscating obfuscators, 528
obfuscation, 19, 50, 418
and compiler identification, 214
imported functions, 428-432
objdump utility, 11, 23-24, 428
object files
displaying information from, 23-24
nm utility to list symbols from, 20-21
object-oriented concepts, 156
objects
initializing, 161
life cycle, 160-161
OEP (original entry point)
recognition, 522
offset cross-references, 172-173
o_imm operand type, 374
OllyDbg, 7, 522, 540
OllyDump plug-in, 523
o_mem operand type, 374
OpAlt function, 566
OpBinary function, 566
OpChr function, 566
opcode bytes
display options, 113
obfuscation, 425-427
Opcode Database, 472
OPCODE_BYTES option, in ida.cfg file, 202
opcodes, 4
OpDecimal function, 566
OpenRCE.org, 35, 364
Anti Reverse Engineering Tech-
niques Database, 436
download page, 479
OpenSSL cryptographic library, 229
OpEnumEx function, 566
operating system
and local debugging, 500
and third-generation languages, 4
operation codes, 4. See also opcodes
OpHex function, 566
OpHigh function, 566
OpNot function, 566
OpNumber function, 566
OpOctal function, 566
Opoff function, 566
OpOffEx function, 566
OpSeg function, 566
OpSign function, 566
OpStkvar function, 566
OpStroffEx function, 566
op_t class, 297, 373-374
processor dependent fields in, 374

INDEX 597

598

INDEX

optimization, 412n
OPTION/ALT key, on Mac, 192-193
Options menu
» Colors, 207
» Demangled Names, 162
» Dump/Normal View, 189
» Font, 58
» General, 62, 65
» Setup Data Types, 123
ord function, 261, 571
ordinal number, for exported
function, 230n
ordinary flows, 169, 170-171
o_reg operand type, 374
original entry point (OEP)
recognition, 522
OS X systems, 23
console specifics, 192-195
IDA debugger, 546-547
IDA version, installation, 36, 37
otool utility for, 24
Terminal Inspector dialog, 193
otool utility, 23, 24
out function, 380, 382
for Python processor, 383
out.cpp file, 380
OutLine function, 381
out_line function, 381
OutMnem function, 381
out_one_operand function, 381
outop function, 380, 381
for Python processor, 383-384
output files, 241-245
OutputDebugStringA function, 537
outputter, in processor module, 366,
380-385
out_register function, 382
out_snprintf function, 381
out_symbol function, 381
out_tagoff function, 382
out_tagon function, 382
OutValue function, 381
overflow buffer, 100
overloaded versions of functions, 162
OverTheWire.org, Wargames
section, 477
Overview Navigator, 55, 215, 427
overview window, 64

P

Pack Database option, when closing
file, 52
pack pragma, 137, 151
packed attribute, 137
packet-analysis tools, 476
padding bytes
for field alignment in structure, 145
to fill program section, 241
PaiMei framework, 177
panning, in Graph Overview window,
64, 184
Parallels, 197
parameters, for debugging process
setup, 549
Parameters option, for user xrefs
chart, 182
ParseTypes function, 566
parsing
errors, in IDC scripts, 255
header files, in C, 151-152
strings to populate type library, 357
structure declarations, in C, 150-151
Pascal-style strings, 70
password
for Ida Sync, 486
for remote IDA debugging, 549
.pat files, parsing, 221
Patch bytes dialog, 238
Patch Program menu, 238-241
Patch word dialog, 239
PatchByte function, 259, 566
patch_byte function, 298
PatchDword function, 259, 566
patches, 458
availability and application, 466
generation, 241-245
in IDAPython directory, 483
patch_long function, 298
patch_many bytes function, 298
PatchWord function, 259, 566
patch_word function, 298
pattern files, creating, 219-221
pat.txtfile, 217, 220
Pause command, in IDA debugger, 504
PauseProcess function, 566
pcap loader, 355-360
pcap_file_header, 355
pcf.exe, 219
PDB (Program Database) file, 50

PE (Portable Executable) format, 8
PE Editor utility, 19
PE loader, 395
PE Sniffer utility, 19
PE Tools, 18-19
PEB (process environment block), 445
PEiD, 19-20
pe.ldw, 46
pelf.exe, 219
percent symbol (%), in AT&T assembly
syntax, 9
permissions, for manually created
sections, 346
per-process basis, exception handling
configured on, 539
persistent data storage, in IDC scripts,
256-257
pe_scripts, 244
pe.sig file, 405
piracy, Hex-Rays’ stance on, 32
plb.exe, 219, 220
plb.txt file, 217, 220, 224
Please choose a structure dialog, 152
Please choose a symbol dialog, 114-115
plug-ins. See also Hex-Rays; ida-x86emu
(x86emu) plug-in
activating, 313
basics, 309-310, 479-480
building, 318-322
collabREate, 488-491
configuration file, 201-202
configuring, 323-324
for customizing processors, 393-395
event notification, 315-316
execution, 316-317
extending IDC, 324-327
IDA Sync, 485-488
IDAPython, 481-484
IDARub, 484-485
initializing, 313-315
installing, 322-323
life cycle, 312-313
mlIDA, 335, 492-494
notification codes for intercepting
calls to processor, 393
in remote debugging, 550
unhooking notifications, 316
user interface, 327-336
writing, 310-318
PLUGIN object, 310

PLUGIN_FIX flag, 312, 313-314

PLUGIN.init function, 312-313, 314

PLUGIN_KEEP, 314

PLUGIN_OK, 314

PLUGIN_PROC ﬂag, 314

PLUGIN.run function, 317

plugins directory, 38

for SDK, 282

plugins.cfgfile, 323

plugin_t class, 310

plugin_t object, initializing, 312

PLUGIN.term function, 313, 314, 316

PLUGIN_UNL ﬂag bit, 313

.plw file extension, 318

.plx file extension, 318

.pmcfile extension, 318

PointerToRawData field, 343

polymorphism, 164

pomf166.exe, 219

popa instruction, 442

popf instruction, 442

PopXML function, 566

port, for remote debugging, 549

Portable Executable (PE) format, 8

posterior lines, for comments, 110

PPC processor, IDA support for, 33

ppsx.exe, 219

predefined comments, with loadint
utilities, 234-236

preprocessor directive, to include idc.idc
file, 254

preprocessor macros, 203

PrevAddr function, 566

PrevFchunk function, 566

PrevFunction function, 263, 566

PrevHead function, 566

Previous button, in welcome screen,
45-46

PrevNotTail function, 566

Print options, for user xrefs chart, 183

printf_line function, 381

printing, stack frame contents, 304

private headers, objdump to display, 23

Problems window, 78

procedure linkage table, 460

procedures, 85. See also functions

process environment block (PEB), 445

Process Monitor, 435

Process Stalker component, 177

INDEX 599

600

INDEX

processes. See also running processes
control in debugger, 504-511
breakpoints, 505-508
stack traces, b11
tracing, 508-510
watches, 511
image, for debugger, 523
launching under debugger control,
499-500
tracing, 437
processor flags, for changing condi-
tional to absolute jumps, 420
processor modules, 38
analyzer in, 366, 371-376
architecture, 395-396
basics, 363-364
building, 389-392
comments for, 382—383
customizing existing, 393-395
emulator in, 366, 376-379
initializing, 370
mnemonic lookup for disassembly
instruction, 369
notifications, 315, 385-386
options for, 203
outputter, 366, 380-385
post-processing, 391
specifying, 47
writing, 366-388
processor-dependent fields, in insn_t
and op_t classes, 374
processors
adding predefined comments for, 235
IDA Pro support for, 33
processor_t struct, 366, 386
processor_t.newasm notification, 388
processor_t.newprc notification, 387
procs directory, 38
program addresses, assigning symbolic
addresses to, 82
Program Database (PDB) file, 50
program entry point, 8n, 213. See also
main function
listing into file, 73
relative virtual address (RVA) of, 342
program stack, emulated, placing data
on top, 448
programming interface, 281
programming languages, 4
programs, in IDC scripts, 254-255
pro.h file, 285, 287

Project Selection dialog
(CollabREate), 491
prologue, of function, 87
ptmobj.exe, 219
ptrace, 437
public name, 106
publish capabilities, in collabREate
architecture, 489
PullThePlug.org, 477
pure virtual function, 158
purged bytes
for functions, 118
manually overriding, 231
Push All Function Names command, in
IDA Sync, 486
push operations, 88, 92-93, 272
and function parameters, 130
pusha instruction, 442
pushf instruction, 442
PushXML function, 566
.pycfile extension, 364, 365
Python
byte code, 364-365
minimal analyzer for, 374-376
interpreter, 365
processor
emulator, 379
generated code from, 388
notify function, 386
python_data function, 384-385

Q

QuickEdit mode, 189
QuickUnpack, 426

radio buttons, on forms, 333
RCE (Reverse Code Engineering)
forums, 35, 479
rdtsc instruction, 454—-455
read cross-reference, 172
readelf utility, 24
reading data, IDC functions for,
259-260
readlong function, 262, 571
readme.txt file
of FLAIR tools, 217
of SDK, 366
readshort function, 262, 571
readstr function, 262, 571

read/write breakpoints, 506
read/write traces, 508
RebuildImports.ide script, 533
Recent IDC scripts dialog, 250
recently used files list, 45
Recursive Depth option, for user xrefs
chart, 183
recursive descent assembly, 11-14
disadvantage, 13
Recursive option, for user xrefs
chart, 182
redpill VMware-detection
technique, 434
Refresh function, 566
RefreshDebuggerMemory function, 566
RefreshLists function, 566
reg.cpp file, 369
register names, 107-108
as output, 382
register_extlang function, 574
registers
accessing values from SDK, 519
displaying contents, 502
pointer to shellcode, 472
register-to-memory transfer
instructions, 11
registry key, 44
History subkey, 45
IDA option values, 207
RegNames array, 369
RegOpenkey function, disassembly of call
to, 228-229
regparm keyword, in GNU gcc/g++, 91
regular comments, 109
regular expressions, in database
searches, 101
relative virtual address (RVA), of pro-
gram entry point, 342
release binaries, vs. debug binaries,
412-414
remote debugging, 547-550
remote procedure call (RPC)
interface, 492
RemoveFchunk function, 566
RenameArray function, 257, 566
RenameEntryPoint function, 566
renimp.idc script, 532
repeatable comments, 109-110
customizing, 112
reporting bugs, 58
request_COMMAND function, 517

RET instruction (x86), 86, 89
return instructions, 13-14
return statement, in IDC scripts, 254
Reverse Code Engineering (RCE)
forums, 35, 479
reverse engineering, 5
Python byte code, 365
references for C++, 165-166
targeted attacks on tools, 432
revert capability, IDA limitations, 53
Rfirst function, 264, 567
Rfirsto function, 567
RfirstB function, 264, 567
RfirstBo function, 567
Rnext function, 264, 567
Rnexto function, 567
RnextB function, 264, 567
RnextBo function, 567
Roberts, J.C., 221
Rolles, Rolf, 364
rotate_left function, 571
RPC (remote procedure call)
interface, 492
RTTI (Runtime Type Identification),
163-164
implementations, 404
RTTICompleteObjectLocator structure, 164
Ruby scripting, in IDARub, 484
run function, in plug-in_t class, 311
Run To Cursor button (emulator), 447
Run to Cursor command (IDA
debugger), 505
Run Until Return command (IDA
debugger), 504
running processes
analyzing, 18-19
attaching debuggers, 498-499
displaying list, 498
RunPlugin function, 567
runtime
computing address for execution
flow at, 421
errors, in IDC scripts, 255
value, jump instruction target
dependence on, 11
Runtime Type Identification (RTTI),
163-164
implementations, 404
RunTo function, 514, 567
Rutkowska, Joanna, 434

INDEX 601

602

INDEX

S

Sabanal, Paul Vincent, 165
SABRE Security, 186
sandbox environments, 6, 426, 427, 523
for debugging malware, 500, 525
instrumentation, 435
Save database dialog, 52
Save disassembly desktop dialog, 209
saved register value (“ s”), 100
saved registers, bytes for, 118
saved return address (“), 100
vs. saved frame pointer, for variable
offsets, 99
savefile function, 262, 571
save_file function, 349
save_simpleton_file function, 353-354
scanning strings, 70
ScreenEA function, 260, 567
script cancellation dialog, 255
scripted-oriented de-obfuscation,
438-443
scripting, 204
to adjust import table entries, 532
associating with hotkeys, 258
basics, 249-250
disadvantages, 443
examples, 267-277
emulating assembly language
behavior, 274-277
enumerating cross-references,
269-271
enumerating exported
functions, 272
enumerating functions, 268
enumerating instructions,
268-269
finding and labeling function
arguments, 272-274
execution, 250-251
IDC functions, 253-254, 258-267
for code cross-references, 264
for data cross-references, 265
data manipulation, 265-266
database names manipulation,
262-263
database search, 266-267
disassembly line components, 267
file input/output, 261-262
functions dealing with, 263
for reading and modifying data,
259-260

string manipulation, 261
user interaction, 260
IDC language, 251-257
error handling, 255-256
expressions, 252
persistent data storage, 256-257
programs, 254-255
statements, 252-253
variables, 251-252
to launch debugger and control
created process, 528-529
in remote debugging, 550
SDK. See IDA Software Development
Kit (SDK)
sdk directory, 36
Search menu » Next Sequence of
Bytes, 102
SEARCH_CASE flag, 266
SEARCH_DOWN flag, 266
search.hpp file, 287
searching
database, 100-102
text searches, 101
for structures, 153
SEARCH_NEXT flag, 266
second-generation programming
languages, 4
section headers, objdump to display, 23
SectionAlignment field, 342
sections, 75
permissions for manually created, 346
SegAddrng function, 567
SegAlign function, 567
SegBounds function, 567
SegByBase function, 567
SegByName function, 567
SegClass function, 567
SegComb function, 567
SegCreate function, 567
SegDefReg function, 567
SegDelete function, 567
SegEnd function, 567
segment. hpp file, 287, 343, 352, 362
segments
creating in database, 343-344
editing dialog, 525
registers
access to configuration, 447
for IDA, 370
SDK functions for manipulating,
302-303
Segments window, 75-76

segment_t class, 297, 302
SegName function, 567
SegRename function, 567
SegStart function, 567
SelectThread function, 567
SelEnd function, 567

self-modifying code, managing in static

analysis environment, 438
Selstart function, 567
semaphore, 422n
semicolon (;)

for comments, 108

for IDC statements, 252—253
sequential flow instruction, 11
server component

in CollabREate, 490-491

command line option, 548

in IDA Sync, 486
SetArraylong function, 257, 295, 567
SetArrayString function, 257, 295, 568
SetBmaskCmt function, 568
SetBmaskName function, 568
SetBptAttr function, 513, 568
SetBptCnd function, 513, 568
SetCharPrm function, 568
SetColor function, 568
SetConstCmt function, 568
SetConstName function, 568
SetDebuggerOptions function, 568
SetEnumBf function, 568
SetEnumCmt function, 568
SetEnumFlag function, 568
SetEnumIdx function, 568
SetEnumName function, 568
SetFchunkAttr function, 568
SetFchunkOwner function, 568
SetFixup function, 568
SetFlags function, 568
SetFunctionAttr function, 568
SetFunctionCmt function, 568
SetFunctionEnd function, 568
SetFunctionFlags function, 568
SetHashLong function, 568
SetHashString function, 569
SetHiddenArea function, 568
set_idc_func function, 325
SetLineNumber function, 569
SetlLocalType function, 569
SetLongPrm function, 569
SetManualInsn function, 568
SetMemberComment function, 569

SetMemberName function, 569
SetMemberType function, 569
set_name function, 300
set_processor_type function, 396
SetProcessorType function, 569
SetReg function, 569
set_reg val function, 519
SetRegValue function, 512, 569
SetRemoteDebugger function, 569
SetSegmentAttr function, 569
SetSegmentType function, 569
set_segm_name function, 302
SetSelector function, 569
SetShortPrm function, 569
SetSpDdiff function, 569
set_start_cs function, 571
set_start_ip function, 572
SetStatus function, 569
SetStrucComment function, 569
SetStrucIdx function, 569
SetStrucName function, 569
SetType function, 570
Setup data types window, 123
Setup strings window, 70
SetXML function, 570
sharing TIL files, 155-156
shellcode

analysis, 475-477

register to point to, 472

Shiva anti-reverse engineering tool, 426
IDA efforts to disassemble, 418—-419

Shiva ELF obfuscation tool for
Linux, 437
shnames array, 387
SHOW_SP option, in ida.cfg file, 202
show_wait_box function, 317
SHOW_XREFS option, in ida.cfg file, 202
shr instruction (x86), 441
shrd instruction (x86), 441
Siemens C166 microcontroller,
reverse enginnering binary
image for, 339
sig directory, 38
.sigfiles, 214, 221
linking .ids file to, 233-234
sigmake.exe utility, 221
sigmake.txtfile, 217, 221-222, 224
signature files, 212
applying, 212-216
creating, 216-225
Signature window, 76-77

INDEX

603

604

INDEX

signatures
for identifying blocks of code, 76
startup, 224-225, 405
signed elements, in array, 128
signed shifts, 441
simplex method, 231
sizeof, for structure, 145
Skape, 4, 430
Skip command (emulator), 447
Skochinsky, Igor, 165, 404
Skoudis, Ed, 435
snapshot, by CollabREate server, 491
sockaddr structure, 74n
Softlce, 436
software, interoperability, 7
software breakpoints, 437, 505
sort_til function, 357
SPARC processor, IDA support for, 33
spoonm, 484
sprintf function (CO), danger of, 270
SQL database, 488
SQLite database, 468
.stack database segment, 445
stack-allocated
arrays, 133-135
buffers, locating all functions with,
463-465
objects, destructors, 161
structures, 138-139
stack-based virtual machine, 365
stacks
bytes, for local variables, 118
distance between variables in, 470
frames, 67, 85-100
example, 91-95
IDA views of functions’, 95
printing contents, 304
as specialized structures, 147
view, 99
manipulation operations, 11
pointers
adjustments, 120-121
advantage of using, 93
correcting computations, 121
customizing, 112
in Python processor, 379
register, emulator for report on
behavior, 378
traces, in IDA debugger, 511
variables
changing names of, 97

formatting as structure, 148-149
renaming, 104-105
views, 95—-100
standard calling convention, 89
standard file input/output variables,
SDK restricting access to, 285
standard structures, 152-155
_start, vs. main function, 213
start address, of functions, 117
start entry point, 73
StartDebugger function, 570
startEA data member, 296
Starting direction option, for user xrefs
chart, 182
startup sequences, monitoring for
process, 500
startup signatures, 224-225, 405
statements, in IDC scripts, 252-253
states, for plug-in loading, 312-313
static
analysis, 6
techniques, 459
de-obfuscation of binaries, 438-455
emulation-oriented
de-obfuscation, 443—-455
scripted-oriented de-obfuscation,
438-443
func attribute, 119
initialization of plug-ins, 313
linking, 22-23
variables, 72n
static keyword, 253
statically linked binaries, 178, 211
identifying and acquiring, 217-219
stdcall calling convention, 120
and stack-pointer analysis, 231
stdcall functions, 118
emulator and, 450
_stdcall modifier, 89
Step Into command, in IDA
debugger, 504
Step Over command, in IDA
debugger, 504
StepInto function, 514, 570
StepOver function, 514, 570
StepUntilRet function, 514, 570
StopDebugger function, 570
store string byte (stosb) instruction, 441
store_type function, 358
stosb (store string byte) instruction, 441
strcpy function, 175, 459
danger of, 270

stream disassemblers, 28—29
strings, 124-126
in IDC scripts, 251, 252
for library identification, 218
manipulation, IDC functions for, 261
scanning, 70
variables, virtual repeatable
comment for, 110
strings utility, 27-28
Strings window, 55, 62, 70-71
in IDA Desktop, 56, 57
refreshing content, 442
StringStp function, 570
strip utility, 18
stripping binary executable files, 18
strlen function, 261, 572
strstr function, 261, 572
struc_t class, 297, 301
struct. hpp file, 287
structures
arrays of, 141-142
collapsing definition, 146
creating, 142-147
editing members, 145-146
enumerating members, 305-306
field offset, 145
formatting stack variables as, 148-149
globally allocated, 138
heap-allocated, 139-141
importance of correct layout, 152
importing, 150-152
manual layout, 143-147
member access, 136-142
notation for readability, 150
SDK functions for manipulating, 301
search for, 153
stack frames as specialized, 147
stack-allocated, 138-139
standard, 152-155
templates, 147-150
Structures window, 74-75, 143
subroutines, 85. See also functions
instruction calls to, 64n
subscribe capabilities, in collabREate
architecture, 489
substr function, 261, 572
substring searches, 101
subviews, in console versions, 189
sub_xxxxxx autogenerated names, 69
summary tools, 20-26
c++filt utility, 25

dumpbin utility, 23, 25
for obfuscation, 428
1dd utility, 22-23
for obfuscation, 428
nm utility, 20-21
objdump utility, 11, 23-24, 428
otool utility, 23, 24
summary view
context-sensitive menu, 97-98
for function’s stack frame, 95
superclass constructors, 161
chain of calls to, 165
superclass destructors, 161
supset function, 293
supstr function, 293
supval function, 293
supvals, 291, 292-294
switch statement
for analyzer function, 372
for different compilers, 400-404
in function, 10
symbol files, 38
symbol-selection dialog, 114-115
symbolic names, assignment to pro-
gram addresses, 82
symbols
objdump to display information, 24
removing from binary file, 18
synchronous interaction, with
debugger, 519
sysenter instruction, 91
Sysinternals, Process Monitor, 435
system call, 91

T

T, in nm utility output, 21

t, in nm utility output, 21

tabs, in IDA Desktop, 55

Tabs function, 570

tags, 291

TailDepth function, 570

tails, 296

TakeMemorySnapshot function, 570

tar archives, 36

target addresses, dynamically
computed, 421-427

targeted attacks on analysis tools, 432

TASM (Borland Turbo Assembler), 9

TCP port, for remote debugging, 549

TEB (thread environment block), 445,
540-541

INDEX 605

606

INDEX

tElock anti-reverse engineering tool,
422-424, 426, 430-431, 540
templates, for structures, 147-150
Tenable Network Security, 493
Tenable Security, 335
term function pointer, in plug-in_t
class, 311
terminating scripts, 255
term_output_butter function, 381
text searches, 101
Text view, 66—67
switching between graph view
and, 184
third-generation programming
languages, 4
this pointer, 90
in C++ member functions, 156
returning in EAX register, 161
thiscall calling convention, 90, 156
thread environment block (TEB), 445,
540-541
threads, IDA and, 317
Threads window, 503
thunk functions, 412-413
ThunRTMain library function, 411
til directory, 39
.til files, 49, 77, 155-156, 228, 574
adding function prototype informa-
tion to, 229
linking .éds file to, 233-234
til2idb function, 356, 570
TILIB utility, 574
time stamp counter (TSC), 454
tool tips, 55, 130n, 331
toolbar area, b5
toolbars
customizing, 208-209
for IDA debugger, 504-505
top-level directory, for SDK, 282
trace (single step) flag, detecting, 436
tracing, in IDA debugger, 508-510
Tracing Options dialog, 508-509
TSC (time stamp counter), 454
Turbo Assembler (TASM), 9
tutuning.txt file, 190
type field, of operand, 374
type libraries. See also .til files
populating by parsing string, 357
version 5.3 support for, 574
Type Libraries window, 77
typedef statement (C), 151

TypeDescriptor structure, 164
typeid operator, 164
typeinf.hpp file, 287, 357
type_info structure, 164
Types window, 155
typinf.hpp file, 356

u

U, in nm utility output, 21
ua.hpp file, 288, 381-382
ua_next_xxx function, 372
uncollapsing node, 186
unconditional branching instructions,
11-12, 171
unconditional jumps, in text view, 67
#undef directive, 255
Undefine command, 121-122
undo, absence of, 39, 53, 61
undocumented CPU instructions,
112-113
Unicode strings, 70
search for, 101
union, 144n
creating, 143-144
within op_t, 374
universal unpacker, 530
unk_xxxxxx autogenerated names, 69
unpacking, automated, 528
unsigned shifts, 441
untar, 37
upgrading
copying idauser.cfg file when, 203
IDA Pro, 34
UPX, 426, 528
emulator to uncompress binary, 450
unpacking script for use with, 443
USE_DANGEROUS_FUNCTIONS
macro, 285
user interaction
IDC functions for, 260
plug-in activation, 316
user interface, 39
notifications, 315
for plug-ins, 327-336
SDK functions for, 299-300
user xref charts, 181-183
user-assigned names, characters
allowed in, 202
user-defined functions, 253
users, for IDA Sync project, 487

users.py file (Ida Sync), 486
USE_STANDARD_FILE_FUNCTIONS
macro, 285, 354

v

var_ prefix for variable names, 97
variables, 7
accessibility in IDG, 253
associating datatype with, 130
IDA name assignment, 97
in IDC scripts, 251-252
monitoring value during
debugging, 511
offsets, 94
generation, 99
standard file input/output, 285
Veracode, 458-459
versions of API
for loader module, 348
for plug-in, 310
vertices in graph, 168
VGA font for X server, 191
View menu
» Graphs
» Flow Chart, 177
» Function Calls, 179
» User Xrefs Chart, 181
» Xrefs From, 180
» Xrefs To, 180
» Open Subviews, 58
» Cross-References, 174, 175
» Disassembly, 66
» Function Calls, 175
» Imports, 532
» Local Types, 150
» Pseudocode, 480
» Strings, 70
» Type Libraries, 155
virtual
addresses, 82
disassembly window
organized by, 84
finding useful, 473-475
names for, 68
in text view, 66
functions, 157-160, 173
machine, stack-based, 365
repeatable comment, for string
variables, 110
VirtualAlloc function, emulated
version, 451

virtualization, detection, 433-435
virtualization software, 197
Visual Basic 60, startup code from com-
piled program, 411
Visual C/C++ compiler, start routine for
code, 410
Visual C++ Express, for building IDA
modules, 320
Visual Studio 2005
for creating project, 320-322
plug-in configuration values, 322
program binaries from, 412
VMware
Tools, 434
Windows registry entries for, 433
Workstations, 197
Voids function, 570
vtable pointer, 157, 159-160
vtables, 157-160
and determining inheritance
relationships, 165
layout, 158
polymorphic object pointer to, 164
vulnerability advisory, 466
vulnerability analysis, 6-7, 457-477
after-the-fact with IDA, 465-469
discovery with IDA, 458-465
exploit-development process,
469-475
finding useful virtual addresses,
473-475
instruction sequences location,
472-473
stack frame breakdown, 470-472
shellcode analysis, 475-477

w

w32 file extension, 389

Wait function, 570

wanted_hotkey pointer, for plug-ins,
312, 324

wanted_name pointer, for plug-ins,
311, 324

Warning function, 260, 269, 299, 570

watch lists, 511

watches, in IDA debugger, 511

watermark, for IDA copy, 32

weak name, for named location, 107

welcome message, 44

wheel mouse, and graph zooming, 64

Whittaker, Andy, 339

INDEX 607

608

INDEX

width, of form input field, 332
Win32 Application Wizard (Visual
Studio), 321
win32_remote.exe, 547
WinDbg debugger, 11
windows. See data displays
Windows installer file, 36
Windows key file. See ida.key file
Windows menu
» Load Desktop, 58, 209
» Remove/Move, 188
» Reset Desktop, 58, 209
» Save Desktop, 58, 209
Windows Multiple Document Interface
(MDI), 331n
Windows operating system
dumpbin utility, 23
IDA installation for, 36
library handle, 4517
Linux-style command shell for, 17
obfuscated malware and, 450
tool to de-obfuscate executables, 426
Windows PE file. See also Portable Exe-
cutable (PE) format
magic numbers to identify, 16
manually loading, 339-347
Windows PE loader, 46
Windows processors, .w32 file exten-
sion for, 389
Windows virtual machine, IDA
within, 39
Wine, 39, 191, 197
running wingraph32 under, 192
wingraph32 application, 176
WinHelp files, 204
WinLicense, 426, 431
Wireshark, 435, 476
word, 100
changing in database, 239
Word function, 259, 570
word_xxxxxx autogenerated names, 69
wrapper code, 179
write breakpoints, 506
write cross-references, 172
write four capability, 469n
write traces, 508
writelong function, 262, 572
writeshort function, 262, 572
writestr function, 262, 572

X

X server, VGA font for, 191
X11
for Wine on OS X, 197
port of TVision libraries, 191
Preferences dialog, 194
x86
assembly language, formats for, 8-9
binaries, generating pseudocode for
functions, 480-481
compilers, 87
fastcall convention, 89-90
RET instruction, 86, 89
instruction set, stream disassemblers
for, 28
processor module, loaders for, 395
x86emu plug-in (ida-x86emu), 336,
444-445, 492
additional features, 453-454
and anti-debugging, 454-455
breakpoints, 446
control dialog, 445
emulator-assisted de-obfuscation,
448-453
functions emulated by, 451
initializing, 445-446
operation, 446—448
.xinitrc file, 194
xmodmap utility, 194
xrefblk_t structure, 306-307
xref.hpp file, 288, 303
xrefs. See cross-references
Xrefs From graph, 181
Xrefs To graph, 180-181
XrefShow function, 570
XrefType function, 264, 265, 270, 570
xtol function, 261, 572

Y

Yason, Mark Vincent, 165
You may start to explore the input file right
now progress message, 57

z

Zbikowski, Mark, 16n

Zip files, for SDK, 280, 281

zipids.exe utility, 233

ZwQuerylnformationProcess
function, 535

Zynamics, 186, 467

COLOPHON

The fonts used in The IDA Pro Book are New Baskerville, Futura, and Dogma.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Spring Forge 60# Smooth Eggshell, which
is certified by the Sustainable Forestry Initiative (SFI). The book uses a
RepKover binding, which allows it to lay flat when open.

UPDATES

Visit hitp://www.nostarch.com/idapro.htm for updates, errata, and other
information.

“This is the densest, most accurate, and, by far, the
best IDA Pro book ever released.”
— Pierre Vandevenne

Owner and CEO of DataRescue SA

No source code? No problem. With IDA Pro, you live

in a source code-optional world. IDA can automatically
analyze the millions of opcodes that make up an execut-
able and present you with a disassembly. But at that
point, your work is just beginning. With The IDA Pro Book,
you'll learn how to turn that mountain of mnemonics into
something you can actually use.

"

Hailed by the creator of IDA Pro as the “long-awaited
and “information-packed” guide to IDA, The IDA

Pro Book covers everything from the very first steps

to advanced automation techniques. While other
disassemblers slow your analysis with inflexibility,

IDA invites you to customize its output for improved
readability and usefulness. You'll save time and effort
as you learn to:

¢ |dentify known library routines, so you can focus your

analysis on other areas of the code

THE FINEST IN GEEK ENTERTAINMENT™

wyw. nostarch cam

©

no starch

press Rephiny

I LAY FLATS

oies RepXover — o duradle biading that woz 1 ingp sha!

RBER USED IN THIS PROCUCT LINE
SF' MEETS THE SOURCING REQUREMENTS
OF T4 SH PROGRAM

WWW SFPROGRAM ORG

ISBN: 978-1-59327-178-7

| LT T

IDA PRO

DE-OBFUSCATED

* Extend IDA to support new processors and filetypes,
making disassembly possible for new or obscure
architectures

* Explore popular plug-ins that make writing IDA scripts
easier, allow collaborative reverse engineering, and
much more

* Utilize IDA’s built-in debugger to tackle obfuscated
code that would defeat o stand-alone disassembler

You'll still need serious assembly skills to tackle the
toughest executables, but IDA makes things a lot easier.
Whether you're analyzing the software on a black

box or conducting hard-core vulnerability research, a
mastery of IDA Pro is crucial to your success. Take your
skills to the next level with The IDA Pro Book.

ABOUT THE AUTHOR

Chris Eagle is a senior lecturer at the US Naval
Postgraduate School in Monterey, California. He is a
co-author of Gray Hat Hacking and has spoken at
numerous security conferences, including Black Hat,
DEFCON, ToorCon, and ShmooCon.

$S9 95 (559.95 CON)

NI IATINS

INTWIOTIAR] TIVMLIOS
/ONTWWY¥9084

