Download from Join eBook (www.joinebook.com)

[EISECUTEIBESINNESNSUIGES

SECURITY SMARTS FOR THE SELF-GUIDED I'T PROFESSIONAL

The Secure Beginner’s

Guides offer trusted, hands-
on coverage of current and
emerging security topics.
Written by experts in the field,
these books make it easy to

put security concepts into
practice now.

30109 SHANNITRVE

Security Metrics: A Beginner's Guide
978-0-07-174400-3

Wireless Network Security: A Beginner's Guide
978-0-07-176094-2

Computer Forensics: A Beginner's Guide
978-0-07-174245-0

AAINS S.aAMNiS AT

Web Application Security: A Beginner’s Guide
978-0-07-177616-5

Available in print and e-book format.

Learn more. % Do more

MHPROFESSIONAL. COM

t Follow us @MHComputing

Download from Join eBook (www.joinebook.com)

Web Application Security

A Beginner's Guide

Bryan Sullivan
Vincent Liu

i

New York Chicago San Francisco
Lisbon London Madnd Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto
Download from Join eBook (www.joinebook.com)

The McGraw-HIll Companies

Copyright © 2012 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

ISBN: 978-0-07-177612-7
MHID: 0-07-177612-5

The matenial in this eBook also appears in the print version of this title: ISBN: 978-0-07-177616-5,
MHID: 0-07-177616-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksalesi@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be rehable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any informa-
tion and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The MeGraw-Hill Companies, Inc. (“*McGrawHill™) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse enpgineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of 1t without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work 1s strictly prohibited. Your right to use the work may be terminated if yvou fail to
comply with these terms.

THE WORK IS PROVIDED “AS I5." McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and 1ts licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither MeGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or 1ts licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or mmability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause anses in contract,

tort or otherwise.
Download from Join eBook (www.joinebook.com)

For Amy. I'm proud to be your husband and partner
but even prouder to be your best friend.

—Bryan
To Yo, the best sister in the universe.

—Vincent
Download from Join eBook (www.joinebook.com)

About the Authors

Bryan Sullivan is a security researcher at Adobe Systems, where he focuses on web and
cloud security issues. He was previously a program manager on the Microsoft Security
Development Lifecycle team and a development manager at HP, where he helped to
design HP’s vulnerability scanning tools, WeblInspect and DevInspect.

Bryan spends his time in Seattle, Washington, where he enjoys all of the perks of living in
the Pacific Northwest: the excellent coffee, the abundant bicycle lanes, the superb Cabernet
Sauvignon. Bryan lives with his wife, Amy, their cat, Tigger, and an as-yet-unnamed new
bundle of joy who will be joining the family sometime around February 14, 2012.

Yincent Liu is a Managing Partner at Stach & Liu, a security consulting firm
providing IT security services to the Fortune 1000 and global financial institutions as well
as U.S. and foreign governments. Before founding Stach & Liu, Vincent led the Attack
& Penetration and Reverse Engineering teams for the Global Security unit at Honeywell
International. Prior to that, he was a consultant with the Ernst & Young Advanced Security
Centers and an analyst at the National Security Agency.

Vincent is a sought-after speaker and has presented his research at conferences
including BlackHat, ToorCon, InfoSec World, SANS, and Microsoft BlueHat. He has
coauthored several books including Hacking Exposed Wireless first and second editions,
and Hacking Exposed Web Applications, Third Edition. Vincent holds a Bachelor of
Science and Engineering from the University of Pennsylvania with a major in Computer
Science and Engineering and a minor in Psychology.

About the Technical Editor

Michael Howard 1s a principal cybersecurity architect in the Public Sector Services group.

Prior to that, he was a principal security program manager on the Trustworthy Computing

(TwC) Group’s Security Engineering team at Microsoft, where he was responsible for

managing secure design. programming, and testing technigues across the company.
Howard is an editor of IEEE Security & Privacy, a frequent speaker at security-related

conferences, and he regularly publishes articles on secure coding and design. Howard is

the coauthor of six security books, including the award-winning Writing Secure Code,

19 Deadly Sins of Software Security, The Security Development Lifecvele, Writing Secure

Code for Windows Vista, and his most recent release, 24 Deadly Sins of Software Security.
Download from Join eBook (www.joinebook.com)

Contents at a Glance

PART | Primer
1 Welcome to the Wide World of Web Application Security 3

2 Security Fundamentals i ittt ieeeaaaa 23

PART Il Web Application Security Principles

3 BUNEMPICEYION. oo oot amaes wes s i o ace 5508 8 o ae e % wiwd e & we s 5ie & 53
. BUOKROFEZIEIONE . «onoos s v s o m s sl i w5, W S 0 B BT o1
5 Browser Security Principles: The Same-Origin Policy 149

6 Browser Security Principles: Cross-Site Scripting

and Cross-Site Request FOrgeryc.iiiieiinecccnnacanas 169

7 Database Security Principlescii ittt iiitetannnaan 213

8 FileSecurity Principlesciiiiiiineeenenneransnnncannannnns 253
Vv

Download from Join eBook (www.joinebook.com)

Vi

Web Application Security: A Beginner's Guide

PART Il Secure Development and Deployment

? Secure Development Methodologies

Epilocue The Wizard, the Giant, and the
Magic Fruit Treest AHappyEndingccciiiiiiiinrinnnnnnns

Download from Join eBook (www.joinebook.com)

Contents

ACKNOWLEDGMENTS: <6 e i adiiid s ovvdiid s 5heida s ik X111
N RGEMGEIN. oy s s i R P T e R S B R s XV

PART | Primer

1 Welcome to the Wide World of Web Application Security 3
Misplaced Priorities and the Need foraNew Focus -
Network Security versus Application Security: The Parable

of the Wizard and the Magic PFruit Trees i ianninnnns 6
Real-World Parallels i
Fomannplice g Brelenaet:: o s e R S P B P R TR R 9
The OMWARPTOP TEN LISE .on s vvivn vhivavivny viei s s v s diede s s 5 a5 £aK 2w 11
Fol. IJEETIONL . o oovi e wwmms s 5ism w0 s e 5 S0 0 e R 5B R 13

#2. Cross-5ite Scripting (XSS) .. e e 13

#3. Broken Authentication and Session Management 14

. Insecure Dhivect Object References ..o .. n . iuviiions venn vamatersein 15

. Cross-Sie BeqUest FOTZOTY oo v vowses o w0 s 5008 5w 4w W i 5 o n 15

vii

Download from Join eBook (www.joinebook.com)

Web Application Security: A Beginner's Guide

0. SECULILY NUSCONTISURBHON. i e v v 5o s wa o v e 545 s 00 S s s
#7. Insecure Cryptographic Storage i e
#8. Fallure to Restrict URL Access ... e

#9. Insufficient Transport Layer Protection

#10. Unvahdated Redirects and Forwardso aivvn vow s smieiss s
Wrapping Upthe OWASPTOpTen i s innstmnsemssonssnns
Secure Features, Not Just Security Features it ein e
FInal THOREIES i i o nd s S o b e e i e G g s v d i s W

2 Security Fundamentals i it iiiiecaaaa

INPAE VALRATON oo v s oo in areinde sonm e & s ot s % iwi xS 8 40 b 3n e & wd
Blacklist Valldation i e e e
Whitelist Validation .. e e e
More Validafion Practiees: i vidin e e i avn ciiar bt e s i s it 5
The-Detense-1n-Dept-ADPPIOACH. o v v i vms il i ie e w oo 6 ¥ 3l & re

Attack SUrTACC REBAMCHIONE .. v o cimv s s s s s s w0 b 8 g b e
Attack Surface Reduction Rules of Thumb i i ...

Classitving-and Prorifizing TRSals i iiaiie s v i oo Gaie ¢ g s e vd 50 s Viis
STRIEE i s s i e i S i T R e R R T R R G
EENEIE i oo o i i s o i o 0 T G 000 L T . v i i e s
0 17 .
Common Weakness Enumeration (CWE) i
DRE&REY i s s i i i S i S s R e R S S S N s

Common Vulnerability Scoring System (CVSS) o it

PART Il Web Application Security Principles

3 KUIDERHCRHION: . ovummcne s i e e s e s e e Sie e S e o s 5

A eesoROUENEERION oo e e S R T R R T PR S
Authentication Fundamentalso i iimnier s i iare s s e dasiens an s
PROVIOR YOUT THENIEY o ooien i s v s s 5/e s ws i h s e s 55w 4505 S s
Two-Factor and Three-Factor Authentication iy
Web-Application ATHeABCAION i Ve s Libe e g e fudud s o aisd B d T v,
Password-Based Authentication Systems
Built-In HTTP AMISAHCAHON. cvnn s o mnsim 8 s mm s evs soms e i 50w b5 £ 4 1
sinple S1gn-0On AUthenticalion . .. vvn e vrsin barrs ss smm s s ms s mbs o 44w
Custom Authenfication Systems e
Yalidating Credentials . o ciiviiiiiiiniivivavinvaieisnsianivsnsennas
sccuring Password-Based AUthenticationcinsrr iy ninrasirsmessnsass
AMACKE APAMSL PASBWOIKIE .. o v wins vswsmis bt ran sos own s bs il s e e 40
The Importance of Password Complexity,

Password Best PracfiCes civiiiiii i e i e s v dhie i e s e i inss s
Download from Join eBook (www.joinebook.com)

Contents)34

soecire Anthentcation Best Practiceso cudi o e e daiivn s e nin s aimie bais 80
When and Where to Perform Authenticationcccevssiannnnsscnsias 80
Securing Web Authentication Mechanisms i, 84

A BURNONZAYGON. cociume e i s @ o eeis Swe & aas s e i wes §ewio =

Access Confrod Conbmied o ciais it i e e i dia s s viid B i St e o Li s as 92
AUIBORTAON. oo s R R e S T WA R S G 93
OCSSION IVIABAGEMAGIE oo v vvmsun 3inm v w s @i wa s 4 She e 60 S W N 5 a 93
Authorization Fundamentalsccevvsimnsrsnsansssssinissssass s 94
Authorization Goals ... e 96
Detailed Authorization Check Process L. 96
IYDes OLPREIIMUIASIONG oo cvvvs s vniih s e v s womi a6 0w vk Sow il 5 arw o s waih s 102
AMROTTTATION TAVEEE. i s e mmn in e sie s 5os i s moad o B 0 0 s 08 S 103
Controls by Layer e 108
Custom Authonzation MechamiSmis: v et se i sinivinsnscinie ey 116
CHent-3000 AMARK o v s s b b i e a5 B S T R e B i 120
TEMEPTOLLERIIOIE 5o aonm armenmms simiems wom S i i 5 50006 SR 4o s e 0% 121
Web Authorization Best Practices e 123
Attacks Against Authorization i i e e 127

sSession Management Fundamentals ... oot iia ittt iiiisiniie s 130
WHALS 8 SERFI0NT. .o coms o snimh S anis mmy vl s 8 s s sr e e sonin o o500 S 130
How 16 Manage SEsSI0N STAET . o ouinveronss semms e essins fa s s e e s 133
Why Do We Need Session Management? 1 34
Attacks AgamslaEsSIONSE s L e N e R R s T e L LR e 135
SolAANG HTTPS: v s e i i i s s 0 s W s S 136
Jetty: Session Predictability inthe Real Worldo iiivin i, 138
Attacks Against Session State e 140

Securing Web Application Session Management i i, 140
Session Management Best Practices it i 141

5 Browser Security Principles: The Same-Origin Policy 149

Behimitig ihe SAMcUIrmgint POIEY . ..o un snmvwnemn smans et e e aoie s 0w s 565 5750 150
An Important Distinction: Chient-Side vs. Server-Side 152
A World Without the Same-Origin Pohicy ciiiiiiitiviesninites 154

Excephons 0 the Samie-Onpin POHEY: ..o v tmivin v e i v s ov e s s baie 155
HTML <5crIp-BICMIBNE oo cvims vis s somi aiimm e 69 s stamiele s ws o o i 1535
TSERMN A IBEINEY o v o i s g S i R R e R S A A S A R BT 156
iframes and JavaScrnpt document.domain Lo L 158
Adobe Flash Player Cross-Domain Policy File 161
NMUICTOROEL- MIVETEITNE . oo cimms v vnimn Sis v iy o i o oo o e i s |64
XMLHttpRequest (Ajax) and Cross-Origin Resource Sharing | 64
XDomainRequest ... e 166

Final Thoughts on the Same-OrigM POLCY ... i e i ivivivivivineninis oy 166

Download from Join eBook (www.joinebook.com)

Web Application Security: A Beginner's Guide

6 Browser Security Principles: Cross-Site Scripting

and Cross-Site ReqUest FOIBeryceeeeseensnncnaasnnsas

CTOSS-SILE OOIIDEIE i oive o oniis vimin s w8 e v R 0w a W §aw 0
CrOss=—S11c SCOPUNG EXDEANEH o v v vows s o w o 0508 ot 3w woar b 5w a0
Reflected XSS L
POST-Based Eeflegted KBS oo oo s i i s oo i i s L s ey ;
SEOTREL JENM. v i e e A R e e e S R A R e R e
EOCAUNG oo i pint s oo e R o i A i B T o e B VB
Ancther Variaton: HTMEL INection:c.o.ceiemss o sirns essnss ssrs ;
XSS Defense: Encoding Output e
vy Defenge SamBmEIPBY oo s 0T e o pe VB as §E i s i e R
XSS Defense: Using a Reduced Markup Language
X858 Defensean-Depth: HUPONLY . v cvemisosanes imsiseseosass s ;
XSS Defense-in-Depth: Content Security Policy (C5P)
Fival Thonghts on Cross-Sileacrping o0 sud o ovpii i ovdse s iaisaves ;

Cross-oie REguest BOIFETY .« on o wn i i S e i s s 50 S a0 ni s e S i
Cross-Site Request Forgery EXPIAINEd ..o v vov v vimviiinvnsn sy ssiisssess
HTTP GET and the Concept of Safe Methods
Ineffective CSRF Defense: Relying on POST
Ineffective CSRF Defense: Checking the Referer Header
mettective AR Defenge: URL BeWHIOME: 5o o v vl same s rvies dases s
Better CSRE Defoeise: SHared SECTEIET .. cvnmnomamms s i v « e ais s s s ;
Better CSRF Defense: Double-Submitted Cookies
PR R R o i S S R R P P RS R R e
ReantBlentiCation . oo o oo s i i s S0 R IR S
What Baang "Togeed In™ MEAE . ..ovmn vvie s esime sis s s o sis s 8v s ns
Final Thoughts on Cross-Site Request Forgery i,

7 Database Security PrinCIples .ci.ocisoninie o some s vwisns e e

Structured Query Language (SQL) Injection i
SQL Injection Effects and Confidentiality-Integnty-Availability ;
The Pangers. ol BEtled BIvOEE .o vvmvmimmies s enm e fine s s o s san 3/ems wad
Blind SQL Injection: No Errors Required
Solving the Problem: Validating Input it ninnnnnnns ;
Regnlar BXPrEfSiins .o ot i S il s S50 aiies a0 s mi s b S aiie s i
sSolving the Problem: Escaping Input, oo i iniiisnsrnenrnseeas

SCtmE DAtADISS PEPMESBIONE . o vocsmin e e nimsd boens s e s i s i saa ks o 66 a5 e ey ;
Single Account SECUITLYttt ittt et
Separate Accounts for Separate Roles i il

STOTE PIOCEAUNE SECMIILY ' oo v vniin viimeii s o b 05 oo v 50w e seb b i bh ¥ e v 6
The Stored-Procedures-Only Approach: Reducing Permissions Even Further

SQL Injection 1n Stored Procedures
Download from Join eBook (www.joinebook.com)

Contents

[ngecure Diect Dect ROICFenCes i v i i se s aie ¥ aivint o viv i oone . it e sin 246
No Technical KNowledge ReqUIrS .. cvi v os s osiaw s me i oo wasan v es s 246
Insecure Direct Object References and Confidentiality-Integrity-Availability 248
Solving the Problem: Pre- or Post-Request Authonzation Checks 249

Final Thoughts on Insecure Direct Object References 251

8 FileSecurity Principles iiiiiiiiiieenneennnaacanasesannnans 253
Keeping Your SOUnce COde SEEIEE L. v e vmmms w5 05w 505 4 5 50 3088 35w 254
Static Content and Dynamic Content civrinevinnncassnserens 256
Revealing Source Code e 258
Interpreted versus Compiled Code i, 259
BacKup FUE LEAKE . o cvin vinwens wmid oo & 605 sud s0n i le s aiae o o K ol s e 260
IRCIC-FIIE LIBAKE s v s s m m st o m st om0 e 48 R 264

Keep Secrets OQut of StaticFiles 265
Exposing sensiive Functionality i i iiiiiiivinnmeiiniiari-an 268
SCCUITY TROURI CDBCURILY o iri i vt i i e a0 6 o BEVEE 8 e e e b e e 271
Borcell BROWEBIIE. oo anme s i 5w @iy s s s 00 st s e a3 e 8 271
Forceful Browsing and Insecure Direct Object References 272
Directory Enumerationttt et 273
Redirect Workflow Manmipulation0 it ianiviinnnesans 276
Difectory TEAVEESAL . v v s vsimn v vt s s o v S A A e R SRR 278
CECITSEAWHL i vt i ne 0 0y w0 S AR AL e B W R 279
More Directory Traversal Vulnerabilities 280
CanomeahFabon oidis it ie e e aia i i dvpdipu i viss s L a e i 282

PART lll Secure Development and Deployment

9 Secure Development Methodologies, 287
Baking Security In e 288
The Barher, the Beter: o oo i e v e v s i s a5 e s v e 288

The Penétrate-and-Patéh Approach ... e iuviiion s denn Vomnboaieis ain 291

The Holistic Approach to Application Security t nnnnans 293
2 £ 1 294
Threat-Modehng oooss ot e v e P S T S e 296
SECURE GOt LADTAFICS . oot o i i e s o e o alvie i o ae sin v sinie b e acn Hon 301

GO0 BEVIEW oioisrvs s sib et dimkon i S80ms wii s s 60 win 5 mblnde o assis o aie i 5k ol 508 303
NECUEILY TERIIIG. . . i o mmin i r n 0 b w48 R R 306
Security Incident Response Planning i 309
Industry Standard Secure Development Methodologies and Matunity Models 311
The Microsoft Security Development Lifecycle (SDL) oiiian.ns 311
OWASP Comprehensive Lightweight Application Secunty Process (CLASP) ... 312

The Software Assurance Matunty Model (SAMM) 314

Download from Join eBook (www.joinebook.com)

Xi

X

Web Application Security: A Beginner's Guide

The Building Security In Maturity Model (BSIMM),
Conclusions on Secure Development Methodologies and Matunty Models

Epilocue The Wizard, the Giant, and the Magic
Fruit TreestAHappuyEndingot iannnacannanns

Download from Join eBook (www.joinebook.com)

Acknowledgments

Iwnuld be completely remiss if [didn’t first thank my wife, Amy, for her unwavering
support during the writing of this book. She may not have written any words or made
any edits, but without her encouragement—and picking up my slack while I spent evenings
and weekends writing instead of cooking dinner or mowing the yard—I’d still be trying to
figure out the best way to finish the first sentence of the introduction.

I'd like to thank my coauthor, Vinnie, for contributing a wealth of knowledge and
experience on web application security. I had a lot of fun writing this book with you, and
I'm glad you talked me into it. And speaking of a wealth of knowledge and experience, I'd
also like to thank our technical editor, Michael Howard. Your hard work made this book
not only a much better reference guide but a much better read as well.

The editorial team at McGraw-Hill Professional is outstanding—truly the definition
of “professional.” Thank you so much. It can’t be easy to make a couple of security guys
sound like actual writers. I particularly want to thank Margaret Berson, Melinda Lytle,
Sapna Rastogi, Patty Mon, Ryan Willard, and Joya Anthony. And last but certainly not
least, many thanks to Amy Jollymore. If you ever run for office as Chief Executive Cat
Herder, you’ll definitely get my vote. This was a blast; let’s do it again sometime!

—Bryan

X

Download from Join eBook (www.joinebook.com)

Xiv Web Application Security: A Beginner's Guide

I'm forever indebted to Bryan for being truly the coolest coauthor anyone could ever
ask for. A huge thank you to Amy Jollymore for the opportunity to work on this book and
to my teammates at Stach & Liu—especially Fran, Justin, and Carl. Your intelligence and
dedication never ceases to amaze or inspire. I wouldn't trade you guys for anything.

—Vincent
Download from Join eBook (www.joinebook.com)

Introduction

Whilﬂ you might be tempted just to skip to a particular chapter that interests you—
say, Chapter 3, which deals with authentication, or Chapter 7, which deals with
database security—you’ll probably be better served by starting at the front and reading
through to the end. Our primary goal here 1s not to “give you a fish” by simply showing
you security vulnerabilities, but rather to “teach you to fish™ by discussing universal
security principles. You should be able to take the same concepts you’ll learn in Chapter 4
on authorization and session management and apply them to the browser security issues
found in Chapter 6. So again, please resist the temptation to skip around, at least on your
first pass through.

We've divided this book into three sections. The first two chapters present a primer
on both web application security concepts and software security concepts in general.
If vou've always wondered about how hackers break into web sites—or struggled to
convince your boss to fund some security initiatives—then you’ll find what you're
looking for here. The second section, comprising six chapters and the majority of the
content of the book, deals with principles of securing common areas of functionality of
web applications. We’ll show the best ways to defend the integrity of your databases, file
systems, user accounts, and many other important resources. Finally, the third section
shows the most effective ways to put all the concepts you've learned into action by laying
out some secure development and deployment methodologies.

XV

Download from Join eBook (www.joinebook.com)

xvi Web Application Security: A Beginner's Guide

There’s an old joke about two hikers walking through the woods when they stumble
upon a bear. They immediately take off running, and the first hiker says to the other,
“Do you think we can actually outrun this bear?” The second hiker replies, “I don’t
have to outrun the bear, | only have to outrun yvou!” There are a lot of organizations that
embrace this as their security philosophy: their only goal is to be a little more secure than
their competitors so that the hackers go after the other guy instead of them. We couldn’t
disagree with this stance more. We think a better philosophy is that *a rising tide lifts all
ships.” The more everyone learns about security and the more all applications are made
more resilient against attack, the more trustworthy the Web will become and the more
interesting things we’ll be able to do with it. We hope that this book brings us a little
closer to that vision. Thanks for reading.

About the Series

We worked with the publisher to develop several special editorial elements for this series,
which we hope you'll find helpful while navigating the book—and furthering your career.

Lineo
The Lingo boxes are designed to help you familiarize yourself with common security
terminology so that you're never held back by an unfamiliar word or expression.

IMHO

(In My Humble Opinion). When you come across an IMHO, you’ll be reading our frank,
personal opinions based on our experiences in the security industry.

Budeet Note

The Budget Notes are designed to help increase your ease while discussing security budget
needs within your organization, and provide tips and ideas for initiating successful, informed
conversations about budgets.

In Actual Practice

Theory might teach us smart tactics for business, but there are in-the-trenches exceptions
to every rule. The In Actual Practice feature highlights how things actually get done in the

real world at times—exceptions to the rule—and why.
Download from Join eBook (www.joinebook.com)

Introduction

Your Plan

The Your Plan feature offers strategic ideas that can be helpful to review as you get into
planning mode, as you refine a plan outline, and as you prepare to embark on a final
course of action.

Into Action

The Into Action lists are “get-going” tips to support you in taking action on the job. These
lists contain steps, tips, and ideas to help you plan, prioritize, and work as effectively as

possible.
Download from Join eBook (www.joinebook.com)

XVil

Download from Join eBook (www.joinebook.com)

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

4 Web Application Security: A Beginner's Guide

We'll Cover

e Misplaced priorities and the need for a new focus

e Network security versus application security: The parable of the wizard
and the magic fruit trees

e Thinking like a defender
e The OWASP Top Ten List

e Secure features, not just security features

The information technology industry has a big problem—a 60-billion-dollar problem,
in fact.

Sixty billion dollars is what the global IT industry spends on security in one year.
That’s more than the gross domestic product of two-thirds of the countries in the world.
And it doesn’t seem as if we're getting a lot for our money, either. Every week, there’s
a new report of some data breach where thousands of credit card numbers were stolen
or millions of e-mail addresses were sold to spammers. Every week, there’s some new
security update for us to install on all of our work and home computers. If we’'re spending
so much money on security, why are we still getting hacked? The answer is simple: we're
spending money, but we 're spending it on the wrong things.

Misplaced Priorities and the
Need for a New Focus

A recent survey of security executives from Fortune 1000 companies (http://www
fishnetsecurity.com/News-Release/Firewalls-Top-Purchase-Priority-In-2010-Survey-Says-)
showed that the number one IT security spending priority was network firewalls. Given
that, you'd guess that the number one way these companies are getting attacked is through
open ports on their networks, wouldn’t you? In fact, if you did, you'd be dead wrong. The
number one way Fortune 1000 companies and other organizations of all sizes get attacked
is through their web applications.

How often do web applications get attacked? Security industry analysts suggest that as
much as 70 percent of attacks come through web applications. And that 70 percent figure

doesn’t just represent a large number of small nuisance attacks like the site defacements
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security

that were so common in the early days of the Web. Vulnerabilities in web applications
have been responsible for some of the most damaging, high-profile breaches in recent
news. Just a small sample of attacks in the first half of 2011 alone includes:

@ The SQL injection attacks on the Sony Music web sites in May 2011 by the LulzSec
organization. While unconfirmed by Sony, it’s also believed that SQL injection
vulnerabilities were responsible for the attacks against the Sony PlayStation Network
and Qriocity that leaked the private data of 77 million users and led Sony to shut
down the services for over a month. The overall cost of this breach to Sony has been
estimated to exceed 171 million dollars (US).

e A cross-site scripting vulnerability in the Android Market discovered in March 2011
that allowed attackers to remotely install apps onto users’ Android devices without their
knowledge or consent.

e The attack on information security firm HBGary Federal in February 2011 by the
hacker group Anonymous. Another simple SQL injection vulnerability in the www
hbgaryfederal.com website, combined with a poorly implemented use of cryptographic
hash functions, enabled Anonymous to extract the company officers” usernames and
passwords, which then enabled them to read the officers’ confidential internal e-mails.
The CEO of HBGary Federal resigned from the company shortly thereafter, citing a
need to “take care of his family and rebuild his reputation.”

None of these attacks were stopped by the sites” firewalls! But I'T budgets still focus
primarily on firewall defenses. This is puzzling, since network firewalls are completely
useless to prevent almost any web application attack. You can’t use firewalls to close off
ports from which your web applications are being served, because then nobody could
come to your web site. Organizations spend billions of dollars a year on advertising to get
people to come to their sites; they’re certainly not going to close them up with firewalls.
Figure 1-1 shows a diagram of an attacker evading a server’s firewall defenses by simply
entering through the web site port 80.

We as an industry definitely have some misplaced priorities when it comes to
security spending. but the magnitude of the imbalance is simply staggering. In another
recent survey of I'T professionals (http://www.barracudanetworks.com/ns/downloads/
White_Papers/Barracuda_Web_App_Firewall WP_Cenzic_Exec_Summary.pdf), almost
90 percent of companies reported that they spend less money on web application security
than they spend on coffee: less than $1 per day per employee. We're willing to spend
billions of dollars a year to protect our networks, but when it comes to the targets that are

really getting hit the hardest, we skimp and cut corners. To repeat an often-used analogy,
Download from Join eBook (www.joinebook.com)

5

6

Web Application Security: A Beginner's Guide

Open 55H shell, port 22

www. website, cxx

Open web connection, port 80

Open 301 connection, port 118

Attacker

Figure 1-1 A server firewall preventing users (and attackers) from accessing most server

ports but leaving port 80 open for web site traffic

this is like installing burglar alarms and steel bars on all of the windows in your home, but
leaving the front door wide open.

Since the same survey showed that almost 70 percent of organizations rely on network
firewalls for their web application defense—which 1s essentially the same as having no
defense at all—it’s hard to see this as anything besides an issue of being appropriately
educated on web application security. People know their web applications are important,
but they don’t know how to secure them.

That’s where this book comes in.

Network Security versus Application Security:
The Parable of the Wizard and the Magic
Fruit Trees

In order to understand the difference between network security issues and application
security issues a little better, consider this parable of the wizard and the magic fruit trees.

Once upon a time there lived a kindly old wizard who loved fruit. He used his magic
spells to create a magnificent orchard full of all different kinds of fruit trees. He created
apple trees, banana trees, and plum trees. He conjured up entirely new kinds of fruit trees
that never existed in nature, fields of vineyards that grew cherries the size of cantaloupes,
and shrubs that grew oranges with purple skin and tasted like watermelons.

As we said, this wizard was a kindly wizard, and he didn’t mind sharing his magical

fruit with all the people of the village. He let them all come and go as they pleased through
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security

his groves, picking as much fruit as they wanted—after all, the trees were magic and grew
new fruit the second the old fruit was picked. Life was good and everyone was happy, until
one day the wizard caught a lovesick young farm boy carving his sweetheart’s initials into
one of the lemonpear trees. He scolded the boy, sent him away, and turned the boy’s ears
into big floppy donkey ears as a punishment (just for a few hours, of course).

The wizard thought that was that and started to get back to his scrolls, but then he
saw another villager trying to dig up a tree so he could take it back to his house and
plant it there. He rushed over to stop this thief but an even more horrific sight caught his
eye first. Two apprentices of the evil wizard who lived across the valley had come with
torches and were trying to burn down the whole orchard to exact revenge for their master’s
embarrassing defeat at wizard chess earlier that month.

Now the wizard had had enough! He threw everyone out, and cast a spell that opened
up a moat of boiling lava to surround the orchard. Now no one could get in to vandalize
his beloved fruit trees, or to steal them, or try to burn them down. The trees were safe—
but the wizard felt unhappy that now he wasn’t able to share his fruit with everyone. And
the villagers did tend to spend a lot of gold pieces buying potions from him while they
were there picking his fruit. To solve this problem, he came up with an ingenious new
solution.

The wizard invited his friend the giant to come live in the orchard. Now whenever
someone wanted a piece of fruit, he would just shout what he wanted to the giant. The
giant would go pick the fruit for them, jump over the lava moat, and then hand them the
fruit. This was a better deal for both the wizard and the villagers. The wizard knew that
all the miscreants would be kept away from the trees, and the villagers didn’t even have to
climb trees any more: the fruit came right to them.

Again, life was good and everyone was happy, until one day one very clever young
man walked up to the edge of the lava where the giant was standing. Instead of asking the
giant to bring him back a basket of persimmons or a fresh raisinmelon, he asked the giant
to go up into the tower and fetch him the wizard’s scrolls. The giant thought this request
was a little strange, but the wizard had just told him to get the people whatever they asked
for. So he went to the tower and brought back the magic scrolls for the young man, who
then ran off with all of the wizard’s precious secrets.

Real-World Parallels
If you were hoping for a happy end to this story, there isn’t one—not yet, at least. First,
let’s take a look at the parallels between this story and the real-world security issues that

organizations like yours face every day.
Download from Join eBook (www.joinebook.com)

8 Web Application Security: A Beginner's Guide

You (the wizard) have data (fruit) that you’d like to share with some people. But you
know that if you just let everyone have free access to your server farm (orchard), there’ll
be disastrous results. People will deface your servers (vandalize the trees), they’ll install
botnets or other malware to take the servers over for themselves (steal the trees), and
they’ll try to deny service to the servers so no one can use them (burn the trees down).

In response to these threats, you erect a firewall (lava moat) to keep everyone out. This
is good because it keeps the attackers out, but unfortunately it keeps all your legitimate
users out too, as you can see in Figure 1-2. So, you write a web application (a giant) that
can pass through the firewall. The web application needs a lot of privileges on the server
(the way a giant is very powerful and strong) so it can access the system’s database and
the file system. However, while the web application 1s very powerful, it’s not necessarily
very smart, and this is where web application vulnerabilities come in.

By exploiting logic flaws in the web application, an attacker can essentially *‘trick™ the
web application into performing attacks on his behalf (getting the giant to do his bidding).
He may not be able to just connect into the servers directly to vandalize them or steal

Attacker

Firewall

Figure 1-2 A firewall (lava moat) keeps attackers out, but keeps legitimate users out as well.
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security

from them any more, but if he can get a highly privileged application to do it for him, then
that’s just as good. He may even be able to read the application source code (the wizard’s
scrolls) out of the file system.

The moral of the story is that it’s necessary to use network-level defenses like firewalls
to keep attackers out, but network-level defenses alone are not sufficient. You also need to
weed out all the logic flaws in your web applications so that they can’t be subverted.

Thinking like a Defender

The goal of this book is to help you prevent the logic flaws that lead to web application
vulnerabilities, and we’ll do this in two ways. First, we’ll examine the code and
configuration problems underlying specific web application vulnerabilities like cross-site
scripting and SQL injection. It’s crucial to be properly educated in defense techniques for
these vulnerabilities, because you will need to put them to the test.
Note

_"A.lnt of people think that they're safe from attack because their company is too small to

~ be noticed by attackers. Hackers only go after the big guys like Google and Microsoft,
right? Think again: According to statistics from the IBM X-Force security research team,
products from the top ten software vendors accounted for only 20 percent of reported
vulnerabilities in 2010 (as seen in Table 1-1), and this number is down from 23 percent

in 2009. Attackers are increasingly targeting the “long tail” of smaller organizations’
web applications, so never think that you're too small to slip under their radar.

Rank | Vendor Disclosure Frequency
I Apple 4.0%
2. Microsoft 3.4%
3. Adobe 2.4%
4. Cisco 1.9%
5, Oracle 1.7%
é. Google 1.6%
i IBM 1.5%
8. Mozilla 1.4%
¢. Linux 1.4%

10. sun 1.1%

MN/A All others 79.6%

Table 1-1 2010 First-Half Vulnerability Disclosure Rates per Vendor (IBM X-Force 2010
Mid-Year Trend and Risk Report)

Download from Join eBook (www.joinebook.com)

10

Web Application Security: A Beginner's Guide

However, as with firewalls, knowing how to defend against specific web application
attacks is necessary but not sufficient by itself. Beyond just looking at specific attacks, we
also want to educate you on larger, more general security principles.

This is important because attack methods change all the time. Attackers refine their
methods, finding new ways to break into systems that were previously thought to be
secure. Every year, some security researcher will present a paper at the BlackHat or
DefCon security conference that negates a built-in browser or operating system defense
that developers had come to rely on.

You need to be prepared not just for the attacks that are going to come today, but for the
new attacks that are going to come tomorrow. You can do this not by thinking like an attacker
(which you’re not), but by learning to think like a defender (which you now are). This is
why it’s so important to learn the general security principles behind the specific defenses.

In Actual Practice

The way that a lot of security experts want you to solve this problem is for you to
“think like an attacker.” In their opinion, if you just think the way the attackers do,
you’ll be able to anticipate their moves and block them. What ridiculous advice!
You’'re not an attacker—at least, I certainly hope you’re not. If you want any degree of
confidence in your results at all, it’s just not possible for you to snap your fingers and
start thinking like someone with years of experience in a completely different field of
expertise.

To show what an unrealistic expectation this is, when I give presentations to groups
of security professionals, I'll sometimes challenge them to think like a dentist. I'll tell
them that my tooth hurts and ask what they plan to do for me. They'll take an X-ray,
they say. “Fine,” I reply. “what are you going to look for in the image?” They don’t
know. “Have you ever operated an X-ray machine before?” They haven’t. “Are you
sure you’'re not going to give me a lethal dose of radiation?” They’re not. This could be
a problem!

When you try to think like an attacker, it’s likely that you’ll not only be lulled
into a false sense of security—thinking you’ve protected yourself when you really
haven’t—but there’s also a good chance that you’ll make matters even worse than they
were before. Maybe we’ll all be better off letting developers be developers, and letting
security researchers be security researchers.

Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security

[t’s good to know how to appropriately encode HTML output to prevent cross-site scripting
attacks, but it’s even better to know that mixing code and data can lead the application

to interpret user input as command instructions. Knowing this—and developing your
applications with an eye to avoiding this—can help you prevent not just cross-site scripting,
but SQL injection, buffer overflows, request header forgery, and many others. And there’s

a good chance 1’1l help you prevent whatever new attacks get dropped at DefCon next
year. The methods may change from year to year, but the underlying principles will always
remain the same.

The OWASP Top Ten List

We’ll spend most of the rest of this book talking about web security vulnerabilities and
principles, but just to whet your appetite for what’s to come, let’s start by getting familiar
with the OWASP Top Ten List.

One of the most-respected authorities in the field of web application security is the
organization OWASP, short for the Open Web Application Security Project. As its name
implies, OWASP is an open-source project with the goal of improving web application
security. (You can see a screenshot of the OWASP web site, www.owasp.org, in Figure 1-3.)

' W iain Page - OWASP ®

= =3 O N O htips)//wew.owasp.org/indew php/Main_Page or |

OWASP — o= |

The Open Web Application Security Project

Page Dicussion Wiew source Hisbory

ikl L Main Page

b Home

b PlEws

b OWASP Projects %
¢ Downloads :::"i
b Local Chapters

b Global Commitees

LppSec Job Board " DWASP = D kpmient
AppSec Conferences Welcome to OWASP Summilc. = ESAP Gulsa u SAMM
Praiaity e The fres and open applicalion Sty COmmUnDy 11 S = = i

e = Top Ten o aptiSamy — SGulde = Hore. ..
Press = WebScarab = Testing Guide
Get OWASP Boo ks

Get OWASP Gear About » Searching « Editing » Mew Artide « OWASP Categaries Statistics + Recent Changes
Mailirg Lists

b About CWASPE

¥ Membership *IPDATED* B-ALG-2011 Election

Referemioe The Open Web Application Securiby Project [DWASP) is a aof Officars

% I'H}W-TI} T T L01c3 not-for-profit woddwide charitable organization

. lJvIru:I:lI»IaI; focused on improving the securty of applicabon softeares.,

E declan o s | Lo ! " ” | DWASFE Suppertars e

Ad Snace Availpile for 2001

- W W W™ W W W™ ™

-

[ndustry Citabons

Figure 1-3 The OWASP web site www.owasp.org

Download from Join eBook (www.joinebook.com)

12

Web Application Security: A Beginner's Guide

OWASP is basically a loose coalition of individual contributors and sponsor companies
who come together to contribute resources to the project. These resources include
guidance documents to explain how to write more secure code, scanning tools to help you
find vulnerabilities in your applications, and secure coding libraries you can use to prevent
vulnerabilities from getting into your applications in the first place. But the best-known
OWASP resource by far is its Top Ten List.

The OWASP Top Ten List of the Most Critical Web Application Security Risks
1s compiled from both objective and subjective data. OWASP sponsor organizations
contribute objective data on the prevalence of different types of web application
vulnerabilities: how many database attacks they’ve seen, how many browser attacks, and
so on. OWASP-selected industry experts also contribute more subjective rankings of the
severity or potential damage of these vulnerabilities.

As we mentioned earlier, web security risks change over time as new vulnerabilities
are discovered (or invented). And it’s not all doom and gloom; new defenses are developed
every year too. New versions of application frameworks, web servers, operating systems,
and web browsers all often add defensive technology to prevent vulnerabilities or limit the
impact of a successful attack.

Tip
 Built-in browser defenses can be a great help, but don’t rely on them. It's very unusual
~ to be in a situation where you can guarantee that all your users are using the exact

same browser. Certainly this won't ever be the case if you have any public-facing

web applications. And even if you're only developing web sites for use inside an
organizational intranet where you can mandate a specific browser, it's likely that
some users might configure their settings differently, inadvertently disabling the
browser defenses. The bottom line here is that you should treat browser defenses as an
unexpected bonus and not take them for granted. You are the one who needs to take
responsibility for protecting your users. Don't count on them to do it for you.

Since web application vulnerability risks change, becoming comparatively more or
less critical over time, the OWASP Top Ten List 1s periodically updated to reflect these
changes. The first version of the list was created in 2004, then updated in 2007 and again
in 2010 (its most recent version as of this writing). The list 1s ranked from most risk to
least risk, so the #1 issue (injection) 1s considered to be a bigger problem than the #2 issue
(cross-site scripting), which 1s a bigger problem than broken authentication and session
management, and so on,

As of 2010, the current version of the OWASP Top Ten List is as described in the

following sections.
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security

.. SELECT * FROM Catalog WHERE
' ID = 'foo’; DROP TABLE Catalog--

SEEIH:I'I- FDF
‘foo’: DROF TABLE Catalog--

Attacker www_ website exx Database

Figure 1-4 An injection attack against an application’s SQL database

#1. Injection

One of an attacker’s primary goals is to find a way to run his own code on your web
server. If he can do this, he may be able to read valuable confidential data stored in your
databases or conscript it into a remote-controllable botnet of “*zombie™ machines. To
accomplish this through a network-level attack, he might have to find a way to sneak

an executable binary file through your firewall and run it. But with an application-level
attack, he can accomplish his goal through much more subtle means.

A typical web application will pass user input to several other server-side applications
for processing. For example, a search engine application will take the search text entered
by the user, create a database query term from that text, and send that query to the database.
However, unless you take special precautions to prevent it, an attacker may be able to input
code that the application will then execute. In the example of the search engine, the attacker
may enter database commands as his search text. The application then builds a query term
from this text that includes the attacker’s commands, and sends it to the database where it’s
executed. You can see a diagram of this attack in action in Figure 1-4.

This particular attack is called SQL injection and 1s the most widespread form of injection
attack, but there are many others. We see injection vulnerabilities in XML parsing code
(XPath/XQuery injection), LDAP lookups (LDAP injection), and in an especially dangerous
case where user input is passed directly as a command-line parameter to an operating system
shell (command injection).

#2. Cross-Site Scripting (XSS)

Cross-site scripting vulnerabilities are actually a specific type of injection vulnerability
in which the attacker injects his own script code (such as JavaScript) or HTML into

a vulnerable web page. At first glance, this may not seem like an incredibly critical
vulnerability, but attackers have used cross-site scripting holes to steal victims’ login
passwords, set up phishing sites, and even to create self-replicating worms that spread

throughout the target web site.
Download from Join eBook (www.joinebook.com)

15

14 Web Application Security: A Beginner's Guide

Cross-site scripting is dangerous not just because it can have such high-impact effects,
but also because it’s the most pervasive web application vulnerability. You're potentially
creating cross-site scripting vulnerabilities whenever you accept input from a user and
then display that input back to them—and this happens all the time. Think about blogs that
let users write their own comments and replies to posts. Or collaborative wikis, which let
the users themselves create the site content. Or even something as seemingly innocent as
a search feature: if you display the user’s search term back to them (for example, “Your
search for ‘pandas’ found 2498 results™), you could be opening the door to cross-site
scripting attacks.

#3. Broken Authentication and Session Management
Authentication and authorization are usually considered to be network-level defenses,
but web applications add some unique new possibilities for attackers. When you use

a web application, your browser communicates with the application web server by
sending and receiving messages using the Hypertext Transfer Protocol (HTTP). HTTP
1s a stateless protocol, which means that the server does not “remember” who you are
between requests. It treats every message you send to it as being completely independent
and disconnected from every other message you send to it. But web applications almost
always need to associate incoming messages with a particular user. Since the underlying
HTTP protocol doesn’t keep state, web applications are forced to implement their own
state keeping methods.

Usually, the way they do this 1s to generate a unique token (a session identifier)
for each user, associate that user’s state data with the token value, and then send the
token back to the user. Then, whenever the user makes a subsequent request to the web
application, he includes his session identifier token along with the request. When the
application gets this request, it sees that the request includes an identifier token and pulls
the corresponding state data for that token into memory.

There’s nothing inherently insecure with this design, but problems do come about
because of insecure ways of implementing this design. For example, instead of using
cryptographically strong random numbers for session identifiers, an application might be
programmed to use incrementing integers. If you and I started sessions right after each
other, my token value would be 1337 and vours would be 1338. It would be trivial for an
attacker to alter his identifier token to different valid values and just walk through the list
of everyone’s sessions.

Another example of a poor state management implementation is when the application
returns the session token as part of the page URL, like www.site.cxx/page’sessionid=12345.

It’s easy for a user to accidentally reveal this token. If a user copies and pastes the page URL
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security 15

from her browser and posts it on a blog, not only 1s she posting a link to the page she was
looking at but she’s also posting her personal token, and now anyone who follows the link
can impersonate her session.

#4. Insecure Direct Object References

There’s usually no good reason for a web application to reveal any internal resource names
such as data file names. When an attacker sees a web application displaying internal
references in its URL, like the “datafile” parameter in the URL http://www.myapp.cxx/
page’ldatafile=12345.txt, he’ll certainly take the opportunity to change that parameter and
see what other internal data he can get access to. He might set up an automated crawler to
find all the datafiles in the system, from “1.txt” through 99999999 txt”. Or he might get
even sneakier and try to break out of the application’s data directory entirely, by entering a
datafile parameter like “../../../passwords.txt™.

Note

/Throughout this book, you'll see us use example URLs with a top-level domain of “.cxx”,
' like “http:/ /www.myapp.cxx”. We do this because—as of this writing—there is no such
real top-level domain “.cxx”, so there’s no chance that the example site actually exists.

We don’t want to accidentally name a real web site when we're talking about security
vulnerabilities!

#5. Cross-Site Request Foregery

Cross-site request forgery (CSRF) attacks are another type of attack that takes advantage
of the disconnected, stateless nature of HTTP. A web browser will automatically send

any cookies it’s holding for a web site back to that web site every time it makes a request
there. This includes any active session identification or authentication token cookies it has
for that site too.

By sending you a specially crafted e-mail message or by luring you to a malicious web
site, it’s very easy for an attacker to trick your browser into sending requests to any site
on the Internet. The site receives the request, sees that the request includes your current
session token, and assumes that you really did mean to send it.

The worst part about cross-site request forgery is that every site on the Internet that
relies on cookies to identify its users—and there are millions of these sites—is vulnerable
to this attack by default. You’ll need to use additional measures beyond just session
identification cookies to properly validate that incoming requests are legitimate and not

forgeries.
Download from Join eBook (www.joinebook.com)

16

Web Application Security: A Beginner's Guide

#6. Security Misconfiguration

You can code your application with every security best practice there is, crossing every *t”
and dotting every 1", but you can still end up with vulnerabilities if that application isn’t
properly configured. You'll often see these kinds of configuration vulnerabilities when
development settings are accidentally carried over into production environments.

Web applications in particular are designed to be easy to deploy. Sometimes deployment
1s as simple as copying the files from the developer’s machine to the production server.
However, developers usually set their configuration settings to give them as much debugging
information as possible, to make it easier for them to fix bugs. If a developer accidentally
deploys his configuration settings files onto the server, then that whole treasure trove of
internal data may now be visible to potential attackers. This may not be a vulnerability
in and of itself, but it can make it much easier for the attacker to exploit any other
vulnerabilities he may find on the system.

#7. Insecure Cryptoeraphic Storage

Sensitive data like passwords should never be stored unencrypted in plaintext on the
server. In fact, it’s rarely necessary for passwords to be stored at all. Whenever you can,
it’s better to store a one-way cryptographic hash of a user’s password rather than the
password itself,

For example, instead of storing my password “CarrotCake 1437, a web application
could just store the Secure Hash Algorithm (SHA-1) digest value of “CarrotCake 143",
which i1s a 40-character-long string of hexadecimal characters starting with *2d9b0".
When I go to log in to this web application and give it my username and password, it
computes a new SHA-1 hash from the password that [give it. If the new hash matches the
old hash, it figures that I knew the correct password and it lets me in. If the hashes don’t
match, then I didn’t know the password, and it doesn’t let me in.

The benefit of this approach is that hash functions only work in one direction: it’s easy
to compute the hash of a string, but it’s impossible to recompute the original string from
the hash. Even if an attacker somehow manages to obtain the list of password hashes,
he’ll still have to take a brute-force approach to testing for an original value that matches
my “2d9b0..." SHA-1 hash. On the other hand, if the application stores my password
in plaintext and an attacker manages to get ahold of it in that unprotected form, then
he’s already won—and this is just one example of one misuse of one particular form of
cryptography.

Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security 17

Tip
//#Fdt an even better way to secure password hashes, you should add a random value (or
-J," “salt”) to the plaintext password before computing its hash value. This approach has
multiple benefits. First, in case the hash value is ever leaked, it makes an attacker’s job
of reverse-engineering the original password text from a pre-computed lookup table (or
“rainbow table”) much more difficult. (In Figure 1-5, you can see a screenshot of a web
site offering rainbow tables for download, which can be used to crack Windows XP
user accounts.)
And second, without salt values, whenever two users have the same password, they'll
have the same password hash as well. Cracking just one user’s password from a leak
of the hash list could end up revealing account information for potentially hundreds or

thousands of other users as well.

#8. Failure to Restrict URL Access

One way that web applications sometimes keep unauthorized users out of certain pages
on the site is to selectively hide or display the links to those pages. For example, if you're
the administrator for www.site.cxx, when you log in to the web site’s home page, you
might see a link for *Administration” that takes you to admin.site.cxx. Butif I log in to
www.site.cxx, I won’t see that link since I'm not an authorized administrator there.

Bl g e

+ = O #® E!--—--ﬂ-‘--f:ables.php | Wy

Home | Project page | Download | Tables | Mews | Support

XP Rainbow tablas

These lables can be used o crack Windows XP passwords (LM hashes), They CANNOT orack Windows Vista passwords

up_spaciyl|7 SGE)

wp_free_sall3B0ME] and xp_Fee_fastTGME)

& I'E 7 ‘B g 10 ik 12 13 14 |15 16

XP free small (380MB)
formarty known as SSTICO4-10k

Success rabe: 99.0%
Charset: 0123458780abodefghijkimnopgrsiuvwyz ABCDEFGHLIKLMNOPORSTLAWEYZ

Figure 1-5 A web site offering Windows XP password rainbow tables for download

Download from Join eBook (www.joinebook.com)

18

Web Application Security: A Beginner's Guide

This design is fine as long as there’s some other kind of authorization mechanism
in place to prevent me from accessing the administration site. If the only thing keeping
me out 18 the fact that ['m not supposed to know the site is there, that’s not sufficient
protection. If someone on the inside accidentally reveals the secret site, or if I just happen
to guess it, then I'll be able to just get straight in.

#9. Insufficient Transport Layer Protection

Using Hypertext Transfer Protocol Secure (HTTPS) for your web site gives you many
security benefits that regular vanilla HTTP does not. HTTPS uses either the Secure
Sockets Layer (SSL) protocol or, better yet, the Transport Layer Security (TLS)

protocol, which provides cryptographic defenses against eavesdropping attackers or
“men-in-the-middle.” SSL/TLS encrypts messages sent between the client and the web
server, preventing eavesdroppers from reading the contents of those messages. But just
preventing someone from reading your private messages isn’'t enough—you also need to
make sure that nobody changes or tampers with the message data as well—so SSL/TLS
also uses message authentication codes (MACSs) to ensure that the messages haven’t been
modified in transit.

Finally, you need to know that the server you're sending a message to is actually the
server you want. Otherwise, an attacker could still intercept your messages, claim to be
that server, and get you to send “secure” messages straight to him. SSL/TLS can prevent
this scenario as well, by supporting authentication of the server (and optionally the client)
through the use of verified, trusted digital certificates.

Without these protections, secure communications across the Internet would basically
be impossible. You’d never send your credit card number to a web site, since you’d never
know who else might be listening in on the conversation.

Unfortunately, because HTTPS is slower than standard HTTP (and therefore more
expensive since you need more servers to serve the same number of users), many web
applications don’t use HTTPS as thoroughly as they should. A classic example of this is
when a web site only uses HTTPS to protect its login page. Now, protecting the login page
is critical: Otherwise, an attacker could intercept the user’s unencrypted password. But it’s
not enough just to protect that one message.

Assuming the user logs in successfully, the web site will return an authentication
token to the user, usually in the form of a cookie. (Remember, HTTP is stateless.) If all of
the subsequent pages that the user visits after he’s authenticated are not also served over
HTTPS, an attacker could read the authentication token out of the message and then start

using it for himself, impersonating the legitimate user.
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security 19

Note

While getting transport layer security right is a critical part of your application’s
'~ security, it should be evident by now that it's not the only part of your application’s
security. As with firewalls, far too many people tend to put far too much trust in the
litle HTTPS lock icon in their browser. Take SQL injection, for example: if your site is

vulnerable to a SQL injection attack, all that you'll get from using HTTPS is to create a
secure channel that an attacker can use to exploit you.

#10. Unvalidated Redirects and Forwards

With web applications, it’s often the most simple and seemingly innocent functions of the
application that lead to surprisingly damaging vulnerabilities. This is certainly the case
with OWASP #10, Unvalidated Redirects and Forwards (usually just referred to as open
redirect vulnerabilities).

Let’s say that you open your browser and browse to the page www.site.cxx/
myaccount. This page is only accessible to authenticated users, so the application first
redirects you to a login page. www.site.cxx/login. But once you’ve logged in, the site
wants to send you to the myaccount page that you originally tried to go to. So when it
redirects you to the login page, it keeps that original page you asked for as a parameter in
the URL. like www.site.cxx/login7page=myaccount. After you successfully pass the login
challenge, the application reads the parameter from the URL and redirects you there.

Again, 1t sounds very simple and innocent. But suppose an attacker were to send you a
link to www.site.cxx/login?page=www.evilsite.cxx? You might follow the link and log in
without noticing where the page was redirecting you to. And if the site www.evilsite.cxx
was set up as a phishing site to impersonate the real www.site.cxx, you might keep using
evilsite without realizing that you're now getting phished.

Wrapping Up the OWASP Top Ten

You shouldn’t worry if you're unfamiliar with some of the vulnerabilities in the Top Ten
list or even all of them. We’ll cover all of these vulnerabilities and others in detail over the
course of this book, starting with the very basic principles of the attack: Which targets is
the attacker trying to compromise? What does he want to accomplish? What am I doing
that allows him to do this? And most importantly: What can I do to stop him?

And again, remember that each of these vulnerabilities is just a symptom of a larger.,
more general security issue. Our real goal is to educate you on these larger principles. We
don’t just want to “‘give you a fish” and tell you about the OWASP Top Ten, we want to
“teach you to fish” so that if OWASP expands their list next year to be a Top 20 or Top

100, you’ll already have your applications covered.
Download from Join eBook (www.joinebook.com)

20 Web Application Security: A Beginner's Guide

Secure Features, Not Just Security Features

Just as the IT professionals we talked about at the beginning of the chapter had some
misconceptions about network security defenses versus application security defenses,
developers also often have some mistaken beliefs concerning security. Next time you pass
a developer in the hallway, stop him and ask him what he knows about security. He’ll
probably answer with some information about firewalls, antivirus, or SSL. If he’s a Neal
Stephenson fan, maybe he’ll corner you and start ranting on the inherent superiority of the
Blowfish cryptography algorithm over the Advanced Encryption Standard algorithm.

(If this happens to you, we apologize for getting you in this situation.)

And there’s nothing wrong with any of this—firewalls, antivirus, SSL, and cryptography
are all important security features. But there’s a lot more to creating secure web applications
than just knowing about security features. It’s actually much more important to know how
to apply security to the routine development tasks that programmers tackle every day, like
parsing strings or querying databases. In short, it’s more important to know how to write
secure features than it is to know how to write security features.

Look back at the OWASP Top Ten one more time. It's telling that for the majority
of these vulnerabilities, the way that you solve the problem is usually found in a secure
coding technigue rather than in the application of a security feature. This 1s especially true
when you look at the earlier, more critical vulnerabilities on the list. Of the top six, only
one (#3, Broken Authentication and Session Management) can be attributed to misuse of
a security feature. The rest are all caused by improperly coding the *normal,” everyday
features that make up the majority of the work that applications perform.

IMHO

I's disappointing to me that so many people think of security as just being security
features. If you go to your local bookstore and randomly pick a [}onk from the
computing section, that book will probably have one short chapter on security, and
99 percent of that chapter will cover authentication and authorization method:s.

've even seen entire books titled something like “Web Security” that only covered
authentication and authorization.

We're certainly showing our bias here regarding the value of secure features versus
security features. But don’t take that to mean that security features are unimportant. If
you don’t implement appropriate authentication and authorization checks, or if you use
easily crackable homegrown cryptography, your users’ data will be stolen and they won’t
be happy about it. They won’t care whether it was a cross-site scripting vulnerability or

improper use of SSL that led to their credit card being hijacked. They probably won’t even
Download from Join eBook (www.joinebook.com)

Chapter1 Welcome to the Wide World of Web Application Security 21

understand the difference. All they’ll know is that they were hacked. and you're the one
responsible. So cover all your bases, both secure features and security features.

Final Thoueghts

We'll meet up with our friend the wizard again at the end of the book to see what he’s learned
to make his magic fruit orchard a safer place. Of course, we know that the wizard 1s wise
enough not to test out his new spells on anyone’s trees except his own. This goes for you too.
Virtually all of the attack techniques we’ll be describing are illegal for you to test against any
web site, unless you own that site yourself or have explicit permission from the owner.

We've Covered

Misplaced priorities and the need for a new focus
e Seventy percent of attacks come in through a site’s web applications.

e Spending money on network firewalls i1sn’t going to help this problem.

Network security versus application security:
The parable of the wizard and the magic fruit trees

e Web applications are like giants: they're very powerful, but not very smart.

Thinking like a defender

e Application-level attacks are caused by logic flaws in your application.
@ You need to find and fix these flaws to be secure.

e You're not going to do this by pretending to “think like an attacker.”

e But you can do this by learning security principles and starting to think like a defender.

The OWASP Top Ten List

@ The Open Web Application Security Project (OWASP) organization periodically
publishes a list of the current top ten most critical web application vulnerabilities.

® This list is very widely referenced, and you should become familiar with the
vulnerabilities and the underlying causes.

Secure features, not just security features

e It's important to know how to write everyday application functionality in a secure

manner, not just how to use special security features like cryptography and SSL.
Download from Join eBook (www.joinebook.com)

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

24

Web Application Security: A Beginner's Guide

We’'ll Cover

e Input validation
o Attack surface reduction

e Classifying and prioritizing threats

In this chapter, we’ll be taking an early look at two of the high-level security principles

that we’ll be returning to again and again over the course of the book: input validation
and attack surface reduction. If you do nothing else for your application in terms of
security but these two activities (not that we recommend doing nothing else!), you’ll still
be well protected against every major threat that you face today and, more than likely,
every major threat you'll face tomorrow.

We’'ll also take this opportunity to introduce some popular methods of classifying
threats and prioritizing them. We'll be referring to these threat and vulnerability categories
throughout the book, so getting a good grasp on these concepts and the associated lingo
early on will prepare you for what’s ahead.

Input Validation

If there is one overarching, primary security principle, it 1s this: Never Trust the User. In
fact, we should write it like this:

NEVER TRUST THE USER

We understand that taking this viewpoint may seem overly negative or pessimistic.
After all, our users are the reason that we create products and services in the first place.
It almost seems disloyal not to trust them, as if we're an overly suspicious shopkeeper who
plasters “Camera Surveillance 24/7" and “Shoplifters Will Be Prosecuted to the Full Extent
of the Law™ signs all over his store and keeps an eagle eye on anyone who walks in his
door. And what makes matters even worse is that we want—actually, we need—our users
to trust us. We ask a lot from them. We ask them for their e-mail addresses, hoping that they
trust us enough not to turn around and sell them to spammers (or spam them ourselves). We
ask them for their physical addresses and phone numbers. We ask them for their credit card
numbers. If you're like most people, you’ve probably entered data into a faceless corporate

web site that you’d be hesitant about giving out even to your best friend. But while we ask
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals

for their trust, we offer none in return—in fact, we can offer none in return. It’s ironic that
trust on the Web is a one-way street: if we did trust our users, we would become completely
untrustworthy ourselves.

The first and best way you can defend your applications from potentially malicious
users—and remember, you have to treat all users as potentially malicious—is to validate
the data they input into your systems. Remember the wizard and the giant in the magic
fruit orchard story from the last chapter. The wizard asked the giant to serve the villagers’
requests, but the wizard never explained what the limits of those requests should be. (To
put it more specifically, he never explained what a “valid” request should be like versus
an “invalid” request.) And as we all know, neither giants nor computers have much
intelligence of their own; they only do exactly what we tell them to. We need to explicitly
describe the format of a valid request input to keep our application from processing an
invalid input, and thus potentially falling victim to an attack.

Blacklist Validation

Most peoples’ first instinct when coming up with an input validation approach is to list out
all the inputs that are invalid (or create a pattern of invalid inputs) and then block anything
that matches that list. The problem with this approach is that it’s extremely difficult to

list out everything that should be blocked, especially in light of the fact that the list will
probably change over time (and change often).

To draw a real-world analogy for this—yes, more real-world than wizards and giants
and magical fruit orchards—imagine that instead of designing web applications for a
living, you own a restaurant. You want your restaurant to be world-class, so you’ve hired
a top-notch chef, purchased the nicest crystal wine glasses and silverware, and even
contracted an interior design firm to decorate the dining area in a trendy, ultramodern
style. A Michelin star (http://www.michelinguide.com/) 1s within your reach, but to get it
you’ll have to impose a dress code on your customers. After all, you don’t want just any
riffraff coming in off the street wearing cut-off jean shorts and combat boots. So, you
instruct your maitre d’ to politely decline to seat anyone who comes in wearing anything
from this list of prohibitions:

e No shorts

e No T-shirts

e No jeans

e No sweatpants

e No hoodies
Download from Join eBook (www.joinebook.com)

25

26

Web Application Security: A Beginner's Guide

You figure this should just about cover the list of fashion faux pas, but to your shock
and horror you come into your restaurant one night to find an entire table of customers
dining barefoot. You hadn’t considered that anyone would want to do this before, and
although you wish your maitre d’ had had enough sense of his own not to let them in, you
know it’s your own fault and not his. You make a quick addition to the list of restrictions
so that this won’t happen again:

e No shorts

e No T-shirts

e No jeans

e No sweatpants
e No hoodies

e No bare feet

Sure that this time you’ve covered every possibility, you head home for the night, but
when you come back in the next day, you get an even bigger shock. Your entire restaurant
is completely deserted except for two tables. At one table, you see the same people who
were barefoot last night, and this time they are indeed wearing shoes. .. but only shoes.
No shirts, no pants, no anything else. And at the other table, you recognize the food critic
from Bon Appétit magazine, scribbling notes into a pad and laughing to herself. At this
point, you can pretty much kiss your Michelin star (if not your business license) goodbye.

This kind of validation logic, where you try to list out all the possible negative
conditions you want to block, is called blacklist validation. Using blacklist validation on
its own 1s almost never successful: as we just saw, it’s not easy to successfully list every
possible condition you’d want to block, especially when the list is constantly in flux.
Maybe you do manage to compile a huge, comprehensive list of every clothing style you
want to ban from your restaurant, but then the new season of Jersey Shore starts up and
you have to add five new pages to the list.

Another critical failure of the blacklist approach is that it’s impossible to list out every
possible unwanted or malicious input value since there are so many different various ways
to encode or escape input. For example, let’s say that you wanted to block any input value
containing an apostrophe, since you know that attackers can use apostrophes to break out
of database command strings and inject SQL attacks. Unfortunately, there are many ways
to represent an apostrophe character besides just the normal **”;

e %27 (URL encoded)
o ' (HTML encoded)

Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals

e ' (XML encoded)

o ' (HTML hex encoded)
o 0x27 (UTF-8 hex)

e 0x0027 (UTF-16 hex)

e 0x00000027 (UTF-32 hex)

e %2527 (double-URL-encoded)
Note

{Even if you could completely block apostrophes in all their various representations,
| you also have to consider what would happen to any of your users who happen to
have apostrophes in their names or street addresses. And it's generally considered a
good security practice to include punctuation characters in passwords as well since this
increases the range of possible values that an attacker would need to guess.

A blacklisting approach gets even more difficult if you're trying to use it to prevent
users from accessing certain files or URLs. We'll discuss this in more detail in the file
security chapter, but for now consider just a handful of the infinite number of possible
ways to encode the name of the web page www.site.cxx/my page.html:

e http://www.site.cxx/my page.html

e http://www.site.cxx/My Page.html

e hittp://www.site.cxx/MY PAGE.HTML
e http://www.site.cxx/my%20page.html
o http://www.site.cxx:80/my page.html
e hittp://www.site.cxx/./my page.html

e http://1.2.3.4/my page.html
e http://16909060/my page.html

Whitelist Validation

The same principle applies when you try to use blacklist validation alone to defend your web
applications. Even if you could manage to list out every possible SQL injection or cross-site
scripting attack string, someone could come up with a brand-new attack technique tomorrow

and render your list obsolete. A much better strategy—whether you're a programmer or a
restaurateur—is to employ whitelist validation.
Instead of listing out and matching what should be blocked, as blacklist validation

does, whitelist validation works by listing out and matching only what should be allowed.

Download from Join eBook (www.joinebook.com)

27

28

Web Application Security: A Beginner's Guide

Any input that does not match an explicit allow-list or allow-pattern is rejected. For the
restaurant, this might mean that you set a policy where men must wear a dress shirt, suit,
and dress shoes; and women must wear an evening dress and pumps. Any deviation from
this policy and you’re quickly shown the door. Now that we have a strategy in mind, let’s
extend this approach to web application input validation.

Sometimes implementing a whitelist validation strategy 1s straightforward and simple.
If you're expecting the user to choose an input value from a short, predefined list, then you
can easily just check the value against that list. Good candidates for this are any lists of
values that are selected by radio buttons or drop-down lists. For example, let’s say you're
building a car configuration application. You want to give the user three choices for the
exterior color: “Midnight Blue,” *Sunset Red,” or “Canary Yellow,” so you put these three
values into a drop-down list. Your validation logic can simply check that the form value
for the color field 1s “Midnight Blue,” “Sunset Red,” or “Canary Yellow.”

You might be wondering why you’d even need to apply validation logic in this case.
After all, since the choices appear in a drop-down list, doesn’t the browser enforce this rule

b 1]

itself? There’s no way a user could send any value other than “Midnight Blue,” “Sunset
Red,” or “Canary Yellow,” right? You may be surprised to learn that this is definitely not
true, and this misconception leads to many exploitable vulnerabilities in web applications.
Although a browser might prevent users from selecting any value other than what you
intended. that doesn’t necessarily mean that a browser is the only way to send data to a web
application. Under the covers, the browser is just building HTTP requests, sending them to the
web application, and processing the application’s HT'TP responses. There’s absolutely nothing
to prevent an attacker from manually crafting an HTTP request (or even easier, modifying
an outgoing request that the browser has already gone to the trouble of creating itself) and
then sending that to the target application. And there’s no way for the web application to

tell that this has happened. All it knows it that it was expecting a request like this:

POST /buildcar.php HTTP/1.1

Host: www.sportscar.cxx

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

exteriorColor=Midnight+Blue

But what it got was a request like this:

POST ,/buildcar.php HTTPF/1.1

Host: www.sportscar.cxx

Content-Length: 31

Content-Type: application/x-www-form-urlencoded

exteriorColor=Shimmering+Silver
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 29

While this might not seem like a huge security risk (beyond possibly crashing the web
application, which, as we’ll discuss later in this chapter, 1s more of a problem than many
people think), a message like this next one could exploit the database access logic and lead
to a serious compromise of the application:

POST /buildcar.php HTTP/1.1

Host: www.sportscar.cxx

Content-Length: 143

Content-Type: application/x-www-form-urlencoded

exteriorColor="';EXEC+xp cmdshell+'..'

The key takeaway from this is that it’s impossible to defend the server-side logic of
a web application by implementing defenses on the client side. Any validation logic that
you put into client-side code can be completely bypassed by an attacker, whether it’s
constraining the user’s input choices through the choice of user interface objects (that is,
using drop-down lists and radio buttons instead of text fields) or something more elaborate
like JavaScript regular expression validation.

And speaking of regular expressions, using regular expressions (or regexes) is one
very good way of handling more complicated whitelist validation logic. For something
simple like validating a choice of color for a new car, 1t’s easy enough just to check the
incoming value against a predefined list. But to continue the car configuration example,
let’s say that at the end of the configuration process, you ask the user for their e-mail
address so that you can send them a quote for their new car. You certainly can’t check the
address they give you against a predefined list of valid e-mail addresses. This is the kind
of situation where regexes work well.

Into Action

It’s okay to put validation logic on the client—in fact, it’s a good idea for
improving performance—you just can’t put the validation logic enly on the client.
Let’s say yvou have a web form where you ask the user for their telephone number,
and they accidentally enter the wrong number of digits or forget the area or prefix
code. A little bit of client-side validation logic will catch this kind of innocent
mistake and prevent a round-trip submission to the server that wastes server cycles
and irritates the user by making them wait. But again, just make sure that you also
mirror this validation logic on the server to prevent actual attacks.

Download from Join eBook (www.joinebook.com)

30

Web Application Security: A Beginner's Guide

In Actual Practice

Regular expressions are very powerful and versatile, but unless you have blackbelt-level
kung fu regex skills, it can be tough to write regexes that correctly cover every possible
input edge case. We suggest that you treat regular expressions like cryptography: do
use them, but reuse the work that other people have done before you. If you need a
regex, try searching in one of the online regex databases such as www.regexlib.com.

If you can’t find what you’re looking for there, you might also consider purchasing a
commercial regular expression builder tool such as Regex Buddy or Regex Magic.

More Validation Practices

So far, we’ve talked about why you need to validate input, and how best to do it, but we
haven’t yet answered two other important questions: what input to validate and where to
validate 1it.

In terms of what input to validate, the short answer is: validate any untrusted input.
This does beg the question of (and require a much longer answer): what input should be
considered untrusted? Remember the primary security principle we laid out at the start of
this chapter: never trust the user. To start, you must consider any input that you get directly
from a user request to be tainted and potentially malicious. This includes not just web
form control values as we’ve already discussed, but also any query string parameters, any
cookie values, and any header values. All of these inputs are completely controllable by an
attacker.

However, don’t take this to mean that all other sources of input besides web requests
that come in directly from the user are automatically trustworthy. What about the data that
you pull from your database? While you might suppose this is safe—after all, it’s vour
database—think about how that data got into that database in the first place. Was it built
from user input? If so, you're right back in the same situation. What if you got the data
from some other company or organization? Can you trust them completely? (Hint: no, you
can’'t.) And where did they get the data from? Since you can’t guarantee that this data was
validated before you got it, you need to assume that it’s potentially dangerous and validate
it yourself.

A real-world example of this scenario is the Asprox SQL injection worm that started

attacking web sites in 2008. The worm searched Google to find sites that were potentially
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 31

vulnerable to injection attacks, and in a clever twist, when it found one, it did not pull out
the victim’s data, but rather added its own data in. When the victim web application pulled
data from its now-compromised database to display to users, it actually served them the
Asprox worm’s injected malware.

This leads us to the second question we posed at the top of this section: Where is the
best place to validate input? (In the case of the Asprox attacks, the victim web sites were
exploited because they didn’t validate input anywhere, which is definitely not the right
answer.) There are two schools of thought about this question. Some security professionals
believe that the best place to validate input is right as it comes into the system, before it
gets stored in any temporary variables or session state or passed to subroutines. This way,
whenever you use the data, you know it has already been checked and is considered safe.
The opposing viewpoint is that the best place to validate input 1s right before you use it.
This way, you don’t have to rely on another module that might have failed or changed
without your Kknowing it.

IMHO

In terms of the validate-early or validate-late debate, while | do see merit in both
arguments, | have to come down on the side of the late validators. Again, it's a matter
of trust. When you validate early, every other module or routine that processes the
data has to trust that the validation actually was performed and was performed
correclly. A colleague of mine refers to this as the “Lettuce Issue.” She says that while
the grocery store may claim to sell you pre-washed lettuce, she always washes it
again herself before she makes her salads, since that's the only way to really be sure.
The same principle applies to input validation: give that user input a good thorough
washing right before you use it.

The Defense-in-Depth Approach

Of course, another approach to consider would be to validate input both as it comes in
and right before it’s used. This may have some additional impact on the application’s
performance, but it will provide a more thorough defense-in-depth security stance.

If you're unfamiliar with the concept of defense-in-depth. it essentially refers to a
technique of mitigating the same vulnerabilities in multiple places and/or with multiple
different defenses. This way, if a failure occurs at any one point, you 're not left completely
vulnerable. For example, although we strongly discouraged you from using blacklist input
validation as your only method of input validation, it does make a good defense-in-depth

technique when used in combination with whitelist validation.
Download from Join eBook (www.joinebook.com)

32

Web Application Security: A Beginner's Guide

Your Plan

A Never trust the user!

A Validate all input coming from a user. This includes any part of an HTTP
request that you're processing: the header names and values, the cookie names
and values, the querystring parameters, web form values, and any other data
included in the message body.

A Always use whitelist input validation to test input; that is, test whether an input
does match an expected good format and reject it if it doesn’t. Avoid blacklist
input validation; that 1s, testing whether an input matches an expected bad
format and rejecting it if it does.

A Never perform validation just on the client side—an attacker can easily bypass
these controls. Always validate on the server side.

A Use regular expressions for more complicated validation logic like testing e-mail
addresses. Unless you're a regex expert, also consider using a regex from one of
the public databases such as regexlib.com or a commercial regex development
tool such as Regex Buddy.

d If you can afford the performance hit, validate input both as it comes into your
application and again immediately before you use it. But if you can only do it in
one place, do it immediately before use.

Attack Surface Reduction

Like input validation, attack surface reduction is both an effective defense against
the known attacks of today, and a hedge against any new attacks that you might face
tomorrow—attacks that might not even exist in today’s world. Again, if you do nothing
else in terms of secure development practices, as long as you thoroughly and correctly
validate all your application input and reduce your application’s attack surface as much
as possible, you should be able to sleep soundly at night. But before we get too far into
principles of attack surface reduction, maybe we’d better explain what attack surface is.
Put simply, the attack surface of your application is all of its code and functionality
that can be accessed by any untrusted user. And since we’ve already established that you

can never trust a user (with the possible exception of administrators, but even that point
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 33

is open to debate in some circles), a still simpler definition of attack surface 1s that attack
surface is all of the features of your application. Every time you add a new feature to your
application, at the same time you're adding a potential point of failure and a potential
means for an attacker to compromise your system.

Let’s look at a real-world example of this principle: my car. | readily admit that I'm
an electronics junkie. Any time a new piece of home theater gadgetry comes out, I have
to have it. As soon as the latest iPhones and iPads come out, I have to have them. And
the same goes for my cars; whenever I buy a new car, I load it up with every possible
electronic gadget option they offer. My latest car has a backup camera, a DVD player,
high-definition radio, and an integrated 80GB hard drive for storing music. But of all its
cool features, my favorite has to be the GPS.

You just can’t beat the convenience of a GPS. I never have to worry about getting lost,
running out of gas, or even getting stuck in traffic. But this convenience comes at a cost
of a higher *“attack surface” for the car. Since the GPS system retains a memory of where
you’ ve driven to, anyone who has access to your car can see where you've been. This
means my wife Amy can tell if I've been making a few too many stops at our local Best
Buy to “test drive” the new 3D plasma TVs. Worse, if a thief steals my car, he can use the
GPS to find out where I live, then come rob my house too. (He can even let himself in
with the automatic garage door opener.)

This same principle holds true for software. Whenever you add a new feature to your
application, you're adding a potential point of vulnerability. When Microsoft first released
Windows 2000, they installed the Internet Information Server (1IS) web server by default
along with the operating system. For any user who wanted a web server, this was a nice
bonus, and saved them the time of having to download and install it separately. But for
the majority of users—most of whom probably didn’t even know what a web server was,
much less needed to have one installed on their machine—it only added an extra way
for attackers to get into their system. When attackers found a vulnerability in the IIS hit-
highlighting feature that allowed them to bypass authentication mechanisms and access
private files on the IIS server, millions of users were affected needlessly.

While you could solve this kind of problem by pulling out all the non-critical features
of your application and just developing a bare-bones product, that wouldn’t be a great
solution. Features sell products. Users love “bells and whistles”™—these are the kinds of
things that get them excited about using your application. Consider a map web application
like Bing Maps or Google Maps: would you like these applications better if they didn’t
offer driving directions, or traffic alerts, or links to local restaurants? No, these features
add a lot of value to the application and they’d be missed if they weren’t there. Speaking

personally, I'm not going to give up my GPS any time soon, extra attack surface or not.
Download from Join eBook (www.joinebook.com)

34

Web Application Security: A Beginner's Guide

A better solution to lowering attack surface is to allow the user to opt in to activating
certain features rather than installing them by default. This is exactly the strategy that
Microsoft took to solve the IIS issue. 1IS is still included with every version of Windows,
but it’s not installed by default. It’s still incredibly easy to activate—you just open up a
control panel and check a checkbox—but if you don’t need it or want it, then you don’t
have to have that extra point of potential vulnerability.

Another good example of this (and a more web application—focused example) is the way
that Amazon.com handles one-click ordering. Amazon.com has a feature they call “1-Click™
that lets users define default billing and shipping options so that they can purchase an item
from the Amazon web site literally with a single mouse click. This does make it a lot easier
to order goods, especially on mobile devices with limited bandwidth, but it also increases the
odds that you’ll accidentally buy something you didn’t mean to. While 1-Click is enabled by
default, you can choose to disable it by editing your account settings.

In Actual Practice

It’s good that Amazon allows you to reduce your attack surface by opting out of
1-Click, but Microsoft’s opt-in approach is better for the user. When you’re designing
your own web applications, go for an opt-in approach when possible. For example,

if your application accepts credit card payments and you want to allow your users to
store their card information on your server for future transactions, it’s better to make
them check a checkbox to opt in to that rather than making them uncheck a checkbox
to opt out. An average user might not realize the potential danger of 1-Click, and even
if he did, he might not be able to navigate through the various settings pages to find
the control to disable it. Again, it’s better to be secure by default and allow the user to
explicitly lower his security stance than to be insecure by default and force the user to
make explicit changes if he wants to be more secure.

Attack Surface Reduction Rules of Thumb

Since attack surface reduction is really more of an art than a science, it’s difficult to make
concrete recommendations as to how to effectively reduce the attack surface of your
applications. However, there are some rules of thumb that you can apply that will help you

in most situations.
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 35

The first attack surface reduction principle you should apply is the principle of least
privilege. The principle of least privilege states that you should only provide a user with
the permissions that allow him to accomplish what he needs to do, and no more. For
example, while an administrator on your web application might require write-level access
to the application’s product catalog database in order to add new items or change prices, a
standard non-administrative user certainly does not require this access and shouldn’t have
it. You can (and should) enforce this at the application level by performing appropriate
authorization checks. However, you could reduce your attack surface even more by using
different database access accounts for each type of user and locking those accounts down
accordingly. This way, even if someone accidentally missed an authorization check (or if
an attacker found a way to bypass the checks), the underlying account would still lack any
privileges to write to the product catalog and the damage would be minimized.

The best part about this approach is that it doesn’t impact legitimate users at all.
Reducing attack surface by disabling features is effective, but it can cause at least a little
irritation for those users who really did need or want them. But removing privileges to
unnecessary capabilities 1s a pure win-win: legitimate users never know the difference and
it makes an attacker’s job much more difficult.

Another rule of thumb along this same line is that you should not only strive to
minimize the permissions that you grant your users, but also strive to minimize the
capabilities of the programming calls and objects that you yourself use when you're
writing the application. A good example of this is the NET object System.Data.DataSet,
which is used to keep an in-memory cache of data, usually data that’s been retrieved
from a database. DataSet is a flexible, powerful object for working with data—but for
many applications’ purposes, it may actually be a little too flexible and powerful. DataSet
objects can hold the results from not just a single database query, but multiple queries
spanning multiple tables. If you're a NET programmer and you have queries that you
intend to only pull data from a single table, you should probably use DataTable instead of
DataSet. As their name implies, DataTable objects are constrained to a single table of data
and consequently have a much lower attack surface.

Classifyine and Prioritizing Threats

In a perfect world, we would tell you that all security vulnerabilities are equally serious.
We would tell you that if there’s even the slightest chance of a single attacker being able
to compromise a single user for even the smallest nuisance attack, that you should hold

off the product release until every single possible vulnerability has been eliminated from
the code. And if anyone ever does manage to find a vulnerability in your application, we

would tell you to drop everything else you're doing and go fix the problem.
Download from Join eBook (www.joinebook.com)

36 Web Application Security: A Beginner's Guide

But of course, we don’t live in a perfect world, and a hard-line approach to security
like this is completely unrealistic: you'd never actually ship any code. You need a method
to prioritize threats, to know which problems to spend the most time on, so that you can
get the most benefit from the time you have. We'll discuss several methods for this next,
but first, since you can’t accurately prioritize a threat unless you can accurately describe it,
we'll discuss some popular ways of categorizing threats.

STRIDE

STRIDE is a threat classification system originally designed by Microsoft security
engineers. STRIDE does not attempt to rank or prioritize vulnerabilities—we’ll look at
a couple of systems that do this later in this chapter—instead, the purpose of STRIDE
1s only to classify vulnerabilities according to their potential effects. This is immensely
useful information to have when threat modeling an application (as we’ll discuss in the
chapter on secure development methodologies, later in this book), but first, let’s explain
exactly what goes into STRIDE.

STRIDE is an acronym, standing for:

e Spoofing

e Tampering

e Repudiation

e Information Disclosure
e Denial of Service

e Elevation of Privilege

Spoofing vulnerabilities allow an attacker to claim to be someone they’re not, or in
other words, to assume another user’s identity. For example, let’s say that you're logged
in to your bank account at www.bank.cxx. If an attacker could find a way to obtain your
authentication token for the bank web site, maybe by exploiting a cross-site scripting
vulnerability on the site or maybe just by “sniffing” unencrypted Wi-Fi traffic, then he
could spoof the bank site by using your authentication credentials and claiming to be you.

Tampering vulnerabilities let an attacker change data that should only be readable to
them (or in fact, not even readable to them). For instance, a SQL injection vulnerability
in an electronics store web site might allow an attacker to tamper with the catalog prices.
One-dollar laptops and plasma televisions might sound good to you and me, but to the site
owners, it would be disastrous. And tampering threats can apply not just to data at rest, but

data in transit as well. Again, an attacker eavesdropping on an unsecured wireless network
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals

could alter the contents of users’ requests going to web servers or the servers’ responses
back to the users.

Repudiation vulnerabilities let the user deny that they ever performed a given action.
Did you buy 100 shares of Company X at $100/share, only to watch its price slide down
to $50 that same day? Or did you just get buyer’s remorse after ordering a PlayStation 3
the day before Sony announced the PlayStation 47 A repudiation vulnerability might let
you cancel those transactions out and deny that they ever happened. If you think this
sounds like a pretty good deal to you, also consider that you might be on the losing end of
this vulnerability! Maybe you purchased those $100 shares of Company X and the price
skyrocketed to $250, but now the seller denies ever having made the transaction.

Information disclosure vulnerabilities allow an attacker to read data that they’re not
supposed to have access to. Information disclosure threats can come in many forms,
which is not surprising when you stop to think about all the different places you can store
data: databases obviously, but also file systems, XML documents, HTTP cookies, other
browser-based storage mechanisms like the HTMLS localStorage and sessionStorage
objects, and probably many other places as well. Any of these represent a potential target
for an information disclosure attack. And just as with tampering threats, information
disclosure threats can target data in transit, not just data at rest. An attacker may not be
able to read cookies directly off his victim’s hard drive, but if he can read them as they're
sent across the network, that’s just as good to him.

Denial-of-service attacks are some of the oldest attacks against web applications. Put
simply, denial-of-service (or DoS) attacks attempt to knock out a targeted application so
that users can’t access it any more. Usually the way attackers go about this is to attempt to
consume large amounts of some constrained server resource, such as network bandwidth,
server memory, or disk storage space. DoS attackers can use unsophisticated brute-force
methods—Iike enlisting a bunch of their friends (or a botnet) to all hit the target at the
same time as part of a distributed denial-of-service (DDoS) attack—or they can use highly
sophisticated and asymmetric methods like sending exponential expansion “bombs™ to
XML web services.

IMHO

In my opinion, the importance and impact of denial-of-service attacks are highly
underestimated by many software development organizations. I've been in threat
modeling sessions where teams spent hours struggling to identify and mitigate every
possible information disclosure vulnerability edge case in the system, but they glossed
over DoS threats in a matter of just a few minutes. Not to diminish the importance

of information disclosure or any of the other STRIDE categories, but DoS is much

Download from Join eBook (www.joinebook.com)

37

38 Web Application Security: A Beginner's Guide

more than just a nuisance attack. If customers can’t get to your business, then before
long you'll be out of business. One of the primary reasons that corporate security
officers and corporate information officers express a fear of moving their operations
to the cloud is that they won't be able to access their data 100 percent of the time.
A successful DoS attack could quickly confirm their fears, and in the long run could
do a lot more damage to your organization’s reputation for trustworthiness (and
subsequently its business) than a tampering or repudiation attack ever could.

The final STRIDE element, elevation of privilege, is generally considered to be
the most serious type of all of the STRIDE categories. Elevation of privilege (EoP)
vulnerabilities allow attackers to perform actions they shouldn’t normally be able to do.
We talked earlier about spoofing vulnerabilities allowing attackers to impersonate other
users—but imagine how much worse a spoofing vulnerability would be if it allowed
an attacker to impersonate a site administrator. An elevation of privilege vulnerability
like that could potentially put every other STRIDE category into play: the attacker with
administrative rights could read and write sensitive site data, edit server logs to repudiate
transactions, or damage the system in such a way that it would be unable to serve requests.
This is why EoP is considered the king of threat categories; it opens the door to anything
an attacker might want to do to harm your system.

Note
While all EoP vulnerabilities are serious, not all of them are created equal. Some EoP

* vulnerabilities might allow an attacker just to elevate privilege from an anonymous user
to an authenticated user, or from an authenticated user to a “power user.”

When you use STRIDE to classify a vulnerability, also keep in mind that a single
vulnerability may have multiple STRIDE effects. Again, as we just mentioned, any
vulnerability with an elevation of privilege component is likely also subject to spoofing,
tampering, and all of the other components. A SQL injection vulnerability could allow an
attacker to both read sensitive data from a database (information disclosure) and write data
to that database (tampering). If the attacker could use the injection vulnerability to execute
the xp_cmdshell stored procedure, then EoP—and subsequently all of STRIDE—is also
a possibility. (We’ll discuss this attack in more detail in Chapter 7.)

IIMF

As a more simplified alternative to STRIDE, you might want to consider classifying potential
vulnerabilities according to the IIMF model: interception, interruption, modification, and

fabrication. Interception is equivalent to the STRIDE category of information disclosure
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 39

(an attacker can read data he’s not supposed to, either at rest or in transit) and interruption is
equivalent to the STRIDE category of denial-of-service (an attacker can prevent legitimate
users from being able to get to the system). Modification and fabrication are both subtypes
of tampering: modification vulnerabilities allow an attacker to change existing data, and
fabrication vulnerabilities allow an attacker to create his own forged data.

So IIMF covers the T, I, and D of STRIDE, but where does that leave spoofing,
repudiation, and elevation of privilege? For repudiation, since these kind of attacks
generally involve tampering with log files (in order to erase or disguise the fact that a
transaction took place), even in a strict STRIDE perspective, repudiation attacks could be
easily considered just a subtype of tampering. In terms of IIMEF, repudiation attacks would
be considered to be modification attacks: an attacker modifies the system log to erase the
history of his actions.

As for spoofing and elevation of privilege, in some ways these two threats could be
considered the same type of attack. Some security professionals and security analysis tools
will refer to both spoofing and EoP as privilege escalation threats: spoofing vulnerabilities
being classified as horizontal privilege escalations (where the attacker gains no
extra rights but can assume the identity of another user of equal privileges). and EoP
vulnerabilities being classified as vertical privilege escalations (where the attacker does
gain extra rights, such as elevating from a standard to an administrative user account).
Furthermore—not to get too philosophical about it—but both horizontal and vertical
privilege escalations are just a means to some other end. It doesn’t really matter just that
an attacker impersonates another user, or that he impersonates an administrator; it matters
what he does once he obtains that access. Maybe he’ll use that access to read confidential
data or to place fraudulent orders into the system, but those could be called interception
and fabrication attacks. Again, you probably shouldn’t worry too much about this fairly
academic distinction. Whether you prefer the simplicity of lIMF or the specificity of
STRIDE, either approach will serve you well.

CIA

A closely related concept to IIMF is CIA: not the Central Intelligence Agency (or the
Culinary Institute of America, for that matter), but rather the triad of confidentiality,
integrity, and availability. Where interruption, interception, modification, and fabrication
are types of threats, confidentiality, integrity, and availability are the aspects of the system
that we want to protect. In other words, CIA are the traits we want the system to have, and
IIMF are the ways attackers break CIA.

A confidential system 1s one where secret or sensitive data is successfully kept out of

the hands of unauthorized users. For example, you probably consider your home address
Download from Join eBook (www.joinebook.com)

40

Web Application Security: A Beginner's Guide

to be a sensitive piece of data—maybe not as sensitive as your bank account number or
your credit card number, but you probably wouldn’t want your address published all over
the Internet for anyone to see. You'll give it to a shopping web site so that they know
where to send your purchases, but you expect that they’ll keep it away from people who
don’t need to know it. This doesn’t mean that they’ll keep it away from everyone—the
shipping company will need it, for example—but the web site’s merchandise vendors
don’t need it, and the hackers in Russia certainly don’t need it either. Interception is the
IIMF method these attackers will use to gain access to your secret data and break the site’s
confidentiality pledge (even if that’s only a tacit pledge).

If confidentiality is the ability to keep unauthorized users from reading data, integrity
is the ability to keep unauthorized users from writing data. “*Writing data™ here includes
both changing existing data (which would be a modification attack) and creating new data
wholesale (which would be a fabrication attack).

Finally, an available system is one that’s there when you need it and want it. Availability
means the system is up and running and handling requests in a reasonable amount of time,
and 1s not vulnerable to an interruption (denial-of-service) attack. As we said earlier, the
importance of availability cannot be overstated. Put yourself in the shoes of a CSQO, CIO, or
CTO whose business relies on a third-party Software-as-a-Service (SaaS) web application
or cloud service. (In fact, many readers probably won’t have to use their imagination at
all for this!) It takes a great deal of faith to give up direct control of your business process
and your data and let an outside organization manage it for you, even when you know that
they can do it better and cheaper than you can do it yourself. It’s a little like the difference
between driving in a car and flying in an airplane. You're statistically much more likely to
be involved in an accident while driving from your house to the airport than you are while
flying across the country, but people get much more nervous about the flight than the drive.
You could make a good case that this is due to the severity of the risks involved, but (in our
honest opinion) it’s also about the element of relinquishing control.

Beyond confidentiality, integrity, and availability, some people also add authenticity
and nonrepudiation as high-level security goals (CIA-AN). Authenticity is the ability
of the system to correctly identify who 1s using it, to make sure that users (and other
processes) are who they say they are.

Note

" An "authentic” user (or system)—one where the application has correctly identified
. who is using it—is not necessarily the same thing as an “authorized” user/system—one

who has the permission to do the things he's trying to do. Again, authentication and
authorization are extremely important topics in web application security, and each of
them gets its own chapter later in this book.

Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 41

Lastly, nonrepudiation is the ability of the system to ensure that a user cannot deny an
action once he’s performed it. Nonrepudiation controls are the solution to the repudiation
attacks (such as when a user denies that he ever made a purchase or a stock trade) that we
discussed earlier in the STRIDE section.

Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (or CWE) 1s a list of general types of software
vulnerabilities, such as:

e SQL injection (CWE-89)

e Buffer overflow (CWE-120)

e Missing encryption of sensitive data (CWE-311)
o Cross-site request forgery (CWE-352)

e Use of a broken or risky cryptographic algorithm (CWE-327)
e Integer overflow (CWE-190)

The CWE list (maintained by the MITRE Corporation) is more specific than the
general concepts of STRIDE or IIMF, and is more akin to the OWASP Top Ten list we
discussed in the opening chapter on web application security concepts. In fact, MITRE
(in cooperation with the SANS Institute) publishes an annual list of the top 25 most
dangerous CWE issues.

One helpful aspect of CWE is that it serves as a common, vendor-neutral taxonomy
for security weaknesses. A security consultant or analysis tool can report that the web
page www.bank.cxx/login.jsp is vulnerable to CWE-739, and everyone understands that
this means that the page uses a one-way cryptographic hash function without applying a
proper salt value. Furthermore, the CWE web site (cwe.mitre.org) also contains a wealth
of information on how to identify and mitigate the CWE issues as well.

Note that CWE should not be confused with CVE, or Common Vulnerabilities and
Exposures, which is another list of security issues maintained by the MITRE Corporation.
CVEs are more specific still, representing specific vulnerabilities in specific products.
For example, the most recent vulnerability in the CVE database as of this writing 1s
CVE-2011-2883, which is the 2,883rd vulnerability discovered in 2011. CVE-2011-2883
is a vulnerability in the ActiveX control nsepa.ocx in Citrix Access Gateway Enterprise

Edition that can allow man-in-the-middle attackers to execute arbitrary code.
Download from Join eBook (www.joinebook.com)

42

Web Application Security: A Beginner's Guide

DREAD

Like STRIDE, DREAD is another system originally developed by Microsoft security
engineers during the “security push”™—a special security-focused development milestone
phase—for Microsoft Visual Studio .NET. However, where STRIDE is meant to classify
potential threats, DREAD is meant to rank them or score them according to their potential

risk. DREAD scores are composed of five separate subscores, one for each letter of D-R-
E-A-D:

e Damage potential

e Reproducibility (or Reliability)
o Exploitability

e Affected users

e Discoverability

The damage potential component of the DREAD score i1s pretty straightforward: If
an attacker was able to pull off this attack, just how badly would it hurt you? If it’s just
a minor nuisance attack, say maybe it just slowed your site’s response time by one-half
of one percent, then the damage potential for that attack would be ranked as the lowest
score, one out of ten. But if it’s an absolutely devastating attack, for example if an
attacker could extract all of the personal details and credit card numbers of all of your
application’s users, then the damage potential would be ranked very high, say nine or ten
out of ten.

The reproducibility (or reliability) score measures how consistently an attacker would
be able to exploit the vulnerability once he’s found it. If it works every time without fail,
that’s a ten. If it only randomly works one time out of 100 (or one time out of 256, as
might be the case for a buffer overflow attack against an application using a randomized
address space layout), then the reproducibility score might be only one or two.

Exploitability refers to the ease with which the attack can be executed: how many
virtual “hoops™ would an attacker have to jump through to get his attack to work? For
an attack requiring only a “script kiddie” level of sophistication, the exploitability score
would be a ten. For an attack that requires a successful social engineering exploit of an
administrative user within a five-minute timeframe of the time the attack was launched,
the exploitability score would be much lower.

The affected users score is another pretty straightforward measure: the more users that
could be impacted by the attack, the higher the score. For example, a denial-of-service

attack that takes down the entire web site for every user would have a very high affected-
Download from Join eBook (www.joinebook.com)

users score. However, if the attack
only affected the site’s login logic (and
therefore would only affect registered and
authenticated users), then the affected-
users score would be lower. Now, it’s
likely that the registered/authenticated
users are the ones that you care most
about providing access to, but presumably
you would account for this in the damage
potential metric of the DREAD score.
Finally, the second “D” in DREAD
is for the discoverability score—in other

Chapter 2 Security Fundamentals

LINGO

Script kiddie is a term used to refer

to attackers who don’t have any real
technical understanding of the attack
techniques they use; they simply
execute the scripts that other, more
knowledgeable attackers have created
before them. Likewise, a script-kiddie
attack is an attack that's so simple to
execute that anyone with even the
slightest amount of technical knowledge

45

could pull off.

words, given that a vulnerability exists
in the application, how likely is it that an
attacker could actually find 1t? Glaringly obvious vulnerabilities like login credentials or
database connection strings left in HTML page code would score high, whereas something
more obscure, like an LDAP injection vulnerability on a web service method parameter,
would score low.

Once you've established a score for each of the DREAD parameters for a given
vulnerability, you add each of the individual parameter scores together and then divide
by five to get an overall average DREAD rating. It’s a simple system in principle, but
unfortunately, it’s not very useful in actual practice.

One problem with DREAD is that all of the factors are weighted equally. An ankle-
biter attack rated with a damage potential of one but all other factors of ten has a DREAD
score of 8.2 (41/5). But if we then look at another vulnerability with a damage potential of
ten and a discoverability of one—maybe an attack that reveals the bank account numbers
of every user in the system, if you know exactly how to execute it—then that comes out
to the exact same DREAD score of 8.2, This 1s not a great way to evaluate risk; most
people would probably agree that the high-damage attack is a bigger threat than the high-
discoverability attack.

And speaking of discoverability, another common (and valid) criticism of DREAD
1s the fact that discoverability is even a factor for consideration. Security is the ultimate
pessimist’s field: there’s a good argument to be made that you should always assume
the worst 1s going to happen. And in fact, when you score each of the other DREAD
parameters, you do assume the worst. You don’t rate damage potential based on the likely
effects of the attack; you rate damage potential based on the worst possible effects of the

attack. So why hedge vour bets with a discoverability parameter?
Download from Join eBook (www.joinebook.com)

G

Web Application Security: A Beginner's Guide

In Actual Practice

If you do plan to use the DREAD scoring system to rate threats, it’s best to consistently
imagine the worst possible consequences of the attack and score the DREAD parameters
accordingly. This means that discoverability should always be scored a ten. You have

to assume that someone, somewhere will figure out a way to exploit the vulnerability,
whether it’s just a very talented outside attacker or a disgruntled employee with access to
the source code (or maybe even the programmer who wrote the code in the first place).

The worst aspect of DREAD, though, is that each of the DREAD component ratings
are totally subjective. I might look at a potential threat and rate it with a damage potential
score of eight, but you might look at the exact same threat and rate its damage potential as
two. It’s not that one of us is right and the other is wrong—it’s that it’s totally a matter of
opinion, as if we were judging contestants on Dancing with the Stars instead of triaging
security vulnerabilities.

And remember that rating risks is not just an intellectual exercise. Suppose that we
were using DREAD scores to prioritize which threats we would address during the current
development cycle, and which would have to wait until the next release six months from
now. Depending on which one of us first identified and first classified the threat, it might
get fixed in time or it might not.

Because of these shortcomings, DREAD has fallen out of favor even at Microsoft.
We've included it here because you're likely to read about it in older security books or in
online documentation, but we wouldn’t recommend that you use it yourself.

Common Vulnerability Scoring System (CVSS)

A more commonly used metric for rating vulnerabilities i1s the Common Vulnerability
Scoring System, or CVSS. CVSS is an open standard, originally created by a consortium
of software vendors and nonprofit security organizations, including:

e Carnegie Mellon University’s Computer Emergency Response Team Coordination
Center (CERT/CC)

e (Cisco

e U.S. Department of Homeland Security (DHS)/MITRE

Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 45

e ecBay
e IBM Internet Security Systems

e Microsoft

e Qualys

e Symantec

Note
JCVSS should not be confused with either the Common Vulnerabilities and Exposures

' (CVE) or Common Weakness Enumeration (CWE) classification and identification
systems that we discussed earlier in this chapter.

CVSS is currently maintained by the Forum of Incident Response and Security Teams
(FIRST). Like DREAD, CVSS scores go to ten (CVSS scores actually start at zero, not
one as DREAD does), which is the most serious rating. But the components that make up a
CVSS score are much more thorough and objective than those that go into a DREAD score.
At the highest level, a CVSS score is based on three separate parts. The first and most
heavily weighted part is a “base equation™ score that reflects the inherent characteristics of
the vulnerability. These inherent characteristics include objective criteria such as:

e Does the attack require local access, or can it be performed across a network?
e Does the attack require authentication, or can it be performed anonymously?

e Is there any impact to the confidentiality of a potential target system? If so, 1s it a
partial impact (for example, the attacker could gain access to a certain table in a
database) or is it complete (the entire file system of the targeted server could be
exposed)?

o Is there any impact to the integrity of a potential target system? If so, 1s it partial
(an attacker could alter some system files or database rows) or complete (an attacker
could write any arbitrary data to any file on the target)?

e Is there any impact to the availability of a potential target system? If so, is it partial
(somewhat reduced response time) or complete (the system is totally unavailable to
all users)?

The answers to these questions are answered more objectively than setting DREAD
ratings; if ten different people were handed the same issue and asked to classify it according
to the CVSS base rating, they’d probably come up with identical answers or at least very

closely agreeing answers.
Download from Join eBook (www.joinebook.com)

46

Web Application Security: A Beginner's Guide

For many organizations, the CVSS base rating score will be sufficient to appropriately
triage a potential vulnerability. However, if you want, you can extend the base rating by
applying a temporal score modification (characteristics of a vulnerability that may change
over time) and another additional environmental score modification (characteristics of a
vulnerability that are specific to your particular organization’s environment).

The questions that determine the temporal score are also objectively answered
questions, but the answers to the questions can change as attackers refine their attacks and
defenders refine their defenses:

e Is there a known exploit for the vulnerability? If so, is it a proof-of-concept exploit
or an actual functional exploit? If functional, is it actively being delivered in the wild
right now?

e Does the vendor have a fix available? If not, has a third party published a fix or other
workaround?

e Has the vendor confirmed that the vulnerability exists, or is it just a rumor on a blog or
other “underground” source?

Again, these are straightforward questions to answer and everyone’s answers should
agree, but a vulnerability’s temporal score on Monday may be dramatically different from
its temporal score that following Friday—especially if there’s a big security conference
going on that week!

Finally. you can use the environment score questions (also optional, like the temporal
score) to adjust a vulnerability’s overall CVSS score to be more specific to your
organization and your system setup. The environmental metrics include questions like:

e Could there be any loss of revenue for the organization as a result of a successful
exploit of this vulnerability? Could there be any physical or property damage? Could
there be loss of life? (While this may seem extreme, it might actually be possible for
some systems such as medical monitors or air traffic control.)

e Could any of the organization’s systems be affected by the attack? (You might answer
no to this question if the vulnerability only affects Oracle databases, for example, and

your organization only uses SQL Server.) If so, what percentage of systems could
be affected?

Once you’ve answered the relevant questions, you're ready to calculate the final CVSS
score. For CVSS—again, unlike DREAD—the individual components have different weight
when determining the end score. The questions concerning the potential confidentiality,

integrity, and availability impact of the vulnerability have more importance to the end CVSS
Download from Join eBook (www.joinebook.com)

Into Action

Chapter 2 Security Fundamentals 47

When you want to score a vulnerability, go to the NVD web site and use their online

CVSS calculator. You can simply plug in the values for the individual component

metrics (that is, authentication is either required or not required; the integrity impact

is either none, partial, or complete; and so on) and the site will give you your score.

However, just so you can see what goes into it, we list the formula here as published

on the CVSS web site. (Feel free to skip over this if you weren’t expecting this

much math in a book titled Web Application Securityv: A Beginner’s Guide.)

BEaseScore = round to 1 decimal(((0.6*Impact)+(0.4*Exploitability)-1.5)

* f(Impact))

Impact = 10.41*(1-{1-ConfImpact)}*{1l-IntegImpact)*{1-AvailImpact))

Exploitability = 20* AccessVector*AccessComplexity*RAuthentication

fF(impact}l= 0 1f Impact=0, 1.176 otherwise

hoccessVector

AocessComplexity

Authentication

ConfImpact

IntegImpact

AvalilImpact

cCadse

caseg

cCdsge

case

cCdae

cCaseg

AccessVector of
requires local access: 0.355
adjacent network accessible: 0.646

network acces=sible: 1.0

AccesaComplexity of

high: 0.35
medium: Od.&1
low: 0.71

Authentication of

regquires multiple instances of authentication:

requires single instance of authentication:

reguires no authentication: 0.704

ConfidentialityImpact of

none : 0.0
partial: 0.275
complete: 0.660
IntegrityImpact of

none : 0.0
partial: 0.275
complete: 0.660

AvailabilityImpact of

none: 0.0
partial: 0.275
complete: 0.660

Download from Join eBook (www.joinebook.com)

0.45

0.56

48 Web Application Security: A Beginner's Guide

rating than the questions concerning attack vectors (that is, local vs. remote access) and
authentication. In fact, the equations used to calculate the scores are surprisingly complex.
We include the formula for the base CVSS score in the “Into Action” sidebar just so you
can see how the individual components are weighted, but instead of performing these

calculations manually when you’re scoring actual vulnerabilities, you’ll be better off using
one of the online CVSS calculators such as the one hosted on the National Vulnerability
Database (NVD) site at http://nvd.nist.gov/cvss.cfm?calculator.

Your Plan

A Classify general threats and potential vulnerabilities according to the STRIDE
(Spoofing/Tampering/Repudiation/Information disclosure/Denial of service/
Elevation of privilege), [IMF (Interception/Interruption/Modification/
Fabrication), CIA (Confidentiality/Integrity/Availability), or CIA-AN
(Confidentiality/Integrity/Availability/Authentication/Non-repudiation) models.

A Classify specific threats and vulnerabilities according to either the CWE
(Common Weakness Enumeration) or OWASP Top Ten list.

d Rank or score threats according to the CVSS (Common Vulnerability Scoring
System). As an alternative, you can use the DREAD (Damage potential/
Reproducibility/Exploitability/Affected users/Discoverability) model, but this
model 1s generally not recommended since it’s so subjective.

We've Covered

Input validation

e Avoiding blacklist validation techniques

e The correct use of whitelist validation techniques
e Regular expression validation for complex patterns

o The importance of validating input on the server, not just the client
Download from Join eBook (www.joinebook.com)

Chapter 2 Security Fundamentals 49

Attack surface reduction
e Disable seldom-used or non-critical features by default

e Allow users to opt in to extra functionality

Classifying and prioritizing threats
e STRIDE

e IIMF

e CIA and CIA-AN

e CWE

e DREAD

e CVSS

Download from Join eBook (www.joinebook.com)

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

This page intentionally left blank

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

54

Web Application Security: A Beginner's Guide

We’'ll Cover

e Access control overview

o Authentication fundamentals

e Web application authentication

e Securing password-based web authentication

e Secure web authentication mechanisms

N ow that we have the basic security principles under our belt, we can look at the first

part of one of the fundamental security controls for web applications: authentication.
In this chapter, we’ll cover one part of access control by taking a close look at authentication.
We’ll discuss how to prove your identity and break down the process of logging in to a
web site with a username and password. This will lead us to different types of attacks
against passwords. We’ll also talk about when authentication needs to be performed
and the best practices in performing it. Also covered will be the various attacks against
authentication systems, and how to properly mitigate the threats that these attacks pose.

Access Control Overview

For many web applications, it’s important that only certain users be permitted to access
protected resources. A subscription-based online newspaper (for example, The New York
Times) might only want the headline articles to be freely available while the rest of its
content 1s accessible only to paying customers. Enforcing this kind of control means that
you need to have a strong access control system.

Formally defined, an access control svstem is a mechanism that regulates access
to data or functionality by determining whether a subject is permitted to perform an
operation on a target object. Informally, an access control mechanism determines whether
Joe User (our subject) is allowed to view (an operation) the current balance (the object) in
his online bank account, as seen in Figure 3-1.

To make this determination, the access control mechanism relies on two related
processes—authentication and authorization. Authentication is essentially proving that
you are who you claim to be. Continuing our previous example, Joe User authenticates to
his banking website by providing his username and password.

Authorization 1s the process of determining whether the validated identity has the

rights to do what they want to do. Because authorization looks up permissions based
Download from Join eBook (www.joinebook.com)

Subject

Chapter 3 Authentication

Banking web

/ application

o BEE

Account Balance

Operation Object

Figure 3-1 A simple model of access control

on a confirmed identity, it must follow after authentication. Another way of looking
at this 1s that you can have authentication without authorization, but you can’t have

authorization without authentication. As it relates to Joe., we want the access control

system to determine whether he 1s allowed to read the current balance of his bank account,
so he must first prove his identity to the system (authentication), and then the system will
determine whether he has the rights to view the account balance (authorization). A high-

level overview of the access control process is shown in Figure 3-2.

G
I

Subject claims to be a certain identity by
providing identifier (e.g. username).

Subject also provides an authentication
tactar (e.q. password) to prove identity.

I

Authentication mechanism looks up the
credentials in the identity datastore.

Identity confirmed!

Yas Il

A persistent authentication token (e.q.
session ID) is usually returned to the user.

Are the
credentials valid

le.g. password
matches)?

Identity rejected.

Reject the credentials and optionally allow
the user to re-attempt authentication.

Figure 3-2 High-level overview of the access control process
Download from Join eBook (www.joinebook.com)

55

Web Application Security: A Beginner's Guide

Authentication Fundamentals

Authentication is the process in which a subject proves that they are who they claim to

be. Whether it involves a key card and PIN or a username and password, this process

1s composed of two steps: identification and confirmation. Identification is the first step

of claiming to be a certain person, and confirmation is the second step, which allows a
subject to prove that claim. Both online and offline, authentication is ubiquitous. You're

required to prove your identity when doing all sorts of things whether it’s picking up

concert tickets, checking into a hotel, or disputing a charge on your latest cell phone bill.

When I log in to my online bank, I go through the authentication process by entering

a username and password. Entering a username is how | identify myself; it’s the first step;

it’s how I claim to be me. Of course. the application doesn’t take this at face value. It must

confirm that I am who I say I am. In order to prove my claim, I must confirm by entering

the password associated with the username. The assumption is that only I should know

my password, so when the application verifies that the username and password match, it

confirms my identity.

Continuing with our online banking
example, I am required to authenticate
to the banking application so that only
authorized individuals (that 1s, myself)
are allowed to access protected data (for
example, account balances) and sensitive
functionality (for example, transfers). In
general, if an application doesn’t perform
proper authentication, then anyvone with
my username could impersonate me. If
someone were able to arbitrarily access my
bank account, they may be disappointed to
learn how little book writing pays.

We can also define authentication in
another way. Instead of proving that we
are ourselves, sometimes we want to be
able to prove that we’re allowed to act
on behalf of someone else. For example,
you may want to allow your better half
to access your bank account. This can be
useful when you’'re in the hospital with
a burst appendix and the electricity bill
needs to be paid.

LINGO

Authentication is the process of proving
that an entity is who it claims to be. We
have been using “you” throughout this
chapter so far, but keep in mind that
the definition of “you” really includes
persons, machines, code, or any other
actors. Here’s an example: When one
computer system or application wants
to communicate with another, they can
authenticate themselves to one another.
In this case, the actor isn’t a person but
rather a computer. Often we will use the
term “subject” or “principal” as a more
generic version of “you.”

Also, authentication is commonly
discussed together with authorization,
but the two concepts are distinct.
Authentication is commonly abbreviated
as AuthN or Al in contrast fo

authorization, which is referred to as
AuthZ or A2.

Download from Join eBook (www.joinebook.com)

Chapter 3 Authentication

As we mentioned earlier, the process of authentication is the first step in any access control
mechanism. Authentication is important because without it we wouldn’t have confirmation
of a subject’s identity. As a result, we wouldn’t be able to conduct authorization, which relies
on proper authentication, to determine whether or not a subject had been given the rights
to access certain data or perform specific operations. A well-designed access control
mechanism will first perform authentication and then perform authorization whenever
access 1s requested to any protected resource.

Proving Your Identity

So we know that authentication is important, but how do we go about proving our identity?
There are three classes into which we can group the different factors that can be used to
prove identity:

e Something you know

e Something you are

e Something you have

The first class of factors involves providing the authentication mechanism with something
that you know. The most common example of something you know is a password but also
includes things such as a PIN or pass phrase. In the real world. you have to prove your
identity to a customer support representative by providing them with something you know,
such as your account password or the last four digits of your Social Security number.

The second class of factors is based on providing the authentication mechanism with
something that you have, such as a digital certificate, smart card, or a security token (for
example, RSA SecurlD). In the physical world, this is like having a key. To get past the
locked door (access control system) on the front of your house, you need to use the right
key to unlock the door. A key 1s something vou have, or possess, and therefore it’s how
you authenticate yourself to the lock on the door. Simple, but effective.

A security token (see Figure 3-3) is a popular “have” factor because it doesn’t
require specialized client-side hardware such as a smart card reader, and its use is easily
understood by users.

Note

"Security tokens work by generating authentication codes at fixed intervals. By design,
. these authentication codes are not easily predicted because they're cryptographically
generated based on a unique seed value for each token. A successhul attack against
such a token usually requires either physical possession of the token or access to the
token’s seed value. To make an attack against the security token more difficult, a PIN is

often required in addition to the authentication code.
Download from Join eBook (www.joinebook.com)

57

58 Web Application Security: A Beginner's Guide

Figure 3-3 RSA SecurlD security token

The third class of authentication factors is based on something that’s part of who you
are, such as a fingerprint, retinal pattern, hand geometry, or even the topography of your
face. These factors are commonly referred to as biometrics because they're based on a
person’s intrinsic physical qualities or behavioral characteristics. In recent years, biometric
authentication has become more common, especially as most major laptop vendors now
offer fingerprint scanners (see Figure 3-4) and some even offer facial recognition packages.

Budeet Note

Security tokens can be relatively pricey because they depend on specialized hardware
that communicates with a proprietary back-end server that must be kept in sync with
all the deployed tokens. In addition to the cost of initial deployment, the ongoing
maintenance of these devices can prove to be challenging as they're bound to be

lost, destroyed, or otherwise rendered inoperable. Revocation of a security token can
also be much more difficult than other forms of authentication such as resetting a
password. So when you’re considering using security tokens, remember that it’s more
than a single upfront investment; it also requires a considerable amount of time and
money to develop and sustain a process to manage these devices. As a result of these
challenges, many vendors are also offering “soft token” versions that run as software
on a computer or mobile devices.

Download from Join eBook (www.joinebook.com)

Chapter 3 Authentication 59

In Actual Practice

RSA, the largest vendor of security tokens, was recently hacked and the cryptographic
information related to the security of their tokens was compromised. Subsequently,
Lockheed Martin was breached, and the compromise was attributed in part to stolen
SecurlD information from RSA. Since then RSA has offered to replace all of their
customers’ security tokens.

Microsoft’s Kinect device utilizes facial recognition to automatically identify you to the
Xbox 360 gaming console. Its tracking camera will also follow you around as you move
about in front of it. (Queue the Cylon revolution!)

With biometric factors, the assumption is that each person possesses unique fingerprints
and retinal patterns that nobody else should have. Because of this, they act both to identify
and confirm identity. In our examples that follow, this may not always be the case.

Academic research has found that some fingerprint scanners can be fooled by using
gummy bears. For more information, see “Impact of Artificial ‘Gummy’ Fingers on

Figure 3-4 Fingerprint scanner
Download from Join eBook (www.joinebook.com)

60 Web Application Security: A Beginner's Guide

Fingerprint Systems™ at http://cryptome.org/gummy.htm. In Japan, cigarette vending
machines perform facial analysis to determine whether or not the buyer is old enough to
purchase cigarettes. Unfortunately, underage kids are simply holding up photographs to
fool the devices. (This attack has been around since at least Space Quest 2.)

Another problem with biometric factors is when they're stolen. When a security
token or smart card has been compromised, it’s just a matter of invalidating the token,
reclaiming the device (if it hasn’t been stolen), and issuing a new authentication
factor. Although revocation of the biometric record in the authentication database is
straightforward, it’s difficult to re-issue a new biometric factor, and trying to reclaim a
biometric factor will undoubtedly be met with tremendous user resistance.

As attackers have become more sophisticated in their attempts to break or bypass
authentication mechanisms, it has become popular among many organizations to require
two-factor authentication. The most common example of two-factor authentication is the
use of a security token and a PIN to authenticate. This approach of using both something
you have and something you know is normally found on high-security web sites whose
access control systems safeguard very sensitive information or important functionality.
In Hong Kong, laws require that any

online banking application require two- LINGO

factor authentication. As a result, it is quite |.D. validation with two factors from
common to see key chains with security any of the know/have/are categories
tokens that are used to log in to web-based is considered two-factor authentication.
banking applications. Other examples A system that requires one from each
include the use of smart cards and of the know/have/are categories is
fingerprints, which combines something considered three-factor authentication.

you have and something you are.

Two-Factor and Three-Factor Authentication

Two-factor authentication means that the validation of someone’s identity is performed
using factors from two of the three categories (that is, know, have, and are). For example,
authenticating to an ATM with a card and a PIN is considered two-factor because the card
is something that you have and the PIN i1s something that you know. However, the use

of two passwords (or a password and a PIN) is not considered two-factor because they
both come from the same category of something that you know. At the other end, using
multiple factors from the same class doesn’t increase the factors, so using three passwords
(know) and a smart card (have) is still only two-factor authentication. An authentication
system that requires at least one factor from each class (know, have, are) would be

considered three-factor authentication.
Download from Join eBook (www.joinebook.com)

Chapter 3 Authentication 61

Web Application Authentication

Usernames and passwords are the de facto standard for authenticating to web applications,
especially those exposed to the Internet. Under certain circumstances, a second factor
such as a hardware or software security token may be used to increase the security of the
authentication process, but those instances tend to be rare. The use of biometrics i1s almost
unheard of for a web application.

Password-Based Authentication Systems

A number of different username and password systems exist for web applications. The
HTTP specification provides two built-in authentication mechanisms, called Basic access
authentication and Digest access authentication. There are also single sign-on solutions
that you can integrate into your application with such as Windows Live ID and Facebook
Connect. Then there are the custom-developed authentication mechanisms, which we
describe later in the section “Custom Authentication Systems,” and these are what most
web applications implement.

Built-In HTTP Authentication

The HTTP protocol specification provides two forms of built-in authentication:

e Basic access authentication

e Digest access authentication

Both of these authentication methods have significant weaknesses, and they are not
recommended for use under any circumstances. You've probably encountered a dialog
box similar to the one in Figure 3-5, which is an indicator that some form of HTTP
authentication is being used.

L b

[#] Windows Security [#] @

The server www.website.co at request requires a username and password.

| User narme |

| Passweard |

"] Rernember my credentials

| ok || cancel

Figure 3-5 HTTP authentication

Download from Join eBook (www.joinebook.com)

62

Web Application Security: A Beginner's Guide

We'll cover them here for the sake of completeness, but no security-conscious

developer should use either of these methods to protect their application.

Basic Access Authentication
Basic access authentication is a form of authentication that requires a user to enter a

username and password before accessing a resource on the web server. Although this form

of authentication is universally supported by web browsers, it’s inherently insecure. The

process of Basic authentication is as follows:

1,

Basic authentication begins when a user attempts to access a protected resource on a
web server. When a request goes out for a file, such as http://www.website.cxx/secure/
privatefile.html, the web server will respond with the 401 Authorization Required
response code, shown here:

HTTP/1.1 401 Authorization Required

Server: HTTPA/1.0

Date: Sat, 27 Nov 2004 10:18:15 GMT
WWW=-Authenticate: Baslic realm="Secure Area"
Content-Type: text/html

Content-Length: 311

< !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/1999/REC-html401-19991224/1loose.dtd">
<HTML =
<HEAD>
<TITLE=Error</TITLE=
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=I50-8859-1">

< /HEAD=
<BODY><H1>401 Unauthorized.</Hl></BODY>
< /HTML >

When the browser sees this response, it will pop up a dialog box requesting that the
user enter their credentials.

After the credentials are entered and the user clicks the OK button, the browser will
take those values and combine them in a known format where the username and
password are concatenated with a colon *:” between them. This concatenated value 1s
then base64-encoded and submitted via a GET request (shown next) to the web server
under the Authorization header. For example, if we had the username of “stewie” and
the password of “griffin,” then the concatenated plaintext would be “stewie:griffin,” and
then after base64 encoding it would be “c3RI1d2IIOmdyaWZmaW4=",

GET /private/index.html HTTP/1.1
Host: www.website.cxx

Authorization: Basic c3R1dZ2110mdyaWZmaW4d=
Download from Join eBook (www.joinebook.com)

Chapter 3 Authentication 63

4. If the credentials are accepted by the server, then the protected resource is returned to
the user. If it is rejected. then an error may be presented or another 401 response code
may be returned.

Despite the fact that a username and password are required to access the resource, this
method of authentication is insecure for several reasons.

Insecure Transmission Despite the fact that the username and password are base64-
encoded, it’s a trivial exercise for an attacker to intercept these values and decode them.
This 1s because encoding is not encryption, so it lacks the security provided by encryption.
To secure these credentials in transit, they must be submitted over an SSL connection or
other encrypted medium.

Repeated Exposure Compounding the issue of insecure transmission is the fact that
the credentials themselves must be submitted with every single request for a protected
resource. This is unlike the example (described in the section “Custom Authentication
Systems”) where the web application responds with a session ID, which is used to identify
an authenticated session. Instead, the browser caches the credentials and resubmits them
whenever access to a protected resource takes place. The danger here is that the username
and password (instead of a temporary session ID) are exposed over and over with each
request to the w